INFORME FINAL

ELABORACIÓN DE ESTUDIO DE RIESGO (AMENAZA Y VULNERABILIDAD) Y DISEÑO DE OBRAS DE ESTABILIZACIÓN EN LA VEREDA SERRANIA, MUNICIPIO DE MACANAL, JURISDICCIÓN DE LA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR (CORPOCHIVOR).

CONVENIO
Nº 038 DEL 2012
UPTC - CORPOCHIVOR
UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
TABLA DE CONTENIDO

<table>
<thead>
<tr>
<th>Sección</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 GENERALIDADES</td>
<td>11</td>
</tr>
<tr>
<td>1.1. PRESENTACION (JUSTIFICACION Y ALCANCE)</td>
<td>11</td>
</tr>
<tr>
<td>1.1 OBJETIVOS DEL PROYECTO</td>
<td>12</td>
</tr>
<tr>
<td>1.1.1 Objetivo General</td>
<td>12</td>
</tr>
<tr>
<td>1.2. OBJETIVOS DEL PROYECTO</td>
<td>12</td>
</tr>
<tr>
<td>1.2.1 Objetivo General</td>
<td>12</td>
</tr>
<tr>
<td>1.2.2 Metodología</td>
<td>13</td>
</tr>
<tr>
<td>1.3. LOCALIZACIÓN</td>
<td>14</td>
</tr>
<tr>
<td>1.4. PERSONAL</td>
<td>15</td>
</tr>
<tr>
<td>1.5. DESCRIPCION DE ACTIVIDADES REALIZADAS</td>
<td>16</td>
</tr>
<tr>
<td>1.5.1. Trabajo de campo</td>
<td>16</td>
</tr>
<tr>
<td>1.6. ANÁLISIS DE LABORATORIO</td>
<td>18</td>
</tr>
<tr>
<td>1.6.1. Trabajos de Oficina</td>
<td>19</td>
</tr>
<tr>
<td>1.7. DESCRIPCIÓN DEL PROBLEMA Y SUS POSIBLES CAUSAS</td>
<td>19</td>
</tr>
<tr>
<td>1.8. ESTADO DE LA INFORMACIÓN</td>
<td>20</td>
</tr>
<tr>
<td>2 ASPECTOS CLIMATICOS E HIDROLOGICOS</td>
<td>22</td>
</tr>
<tr>
<td>2.1. ANÁLISIS HIDROLÓGICO</td>
<td>23</td>
</tr>
<tr>
<td>2.2. BALANCE HÍDRICO</td>
<td>23</td>
</tr>
<tr>
<td>2.2.1. Tipos de recarga</td>
<td>24</td>
</tr>
<tr>
<td>2.3. ESTIMACIÓN DE LA ESCORRENTÍA</td>
<td>26</td>
</tr>
<tr>
<td>2.4. ESTIMACIÓN DE LA PRECIPITACIÓN</td>
<td>31</td>
</tr>
<tr>
<td>2.4.1. Mapas de Isoyetas generados a partir de los datos de Precipitación</td>
<td>37</td>
</tr>
<tr>
<td>2.4.2. ESTIMACIÓN DE LA EVAPOTRANSPIRACIÓN POTENCIAL (ETP)</td>
<td>43</td>
</tr>
<tr>
<td>2.4.2.1. Formula de J. B. García y J.D. López</td>
<td>43</td>
</tr>
<tr>
<td>2.4.3. Estimación del Balance Hídrico</td>
<td>44</td>
</tr>
<tr>
<td>2.4.4. Metodología</td>
<td>45</td>
</tr>
<tr>
<td>2.4.5. RESULTADOS OBTENIDOS</td>
<td>48</td>
</tr>
<tr>
<td>2.5. CALCULO DE CAUDAL DE DISEÑO A PARTIR DE LAS CURVAS IDF</td>
<td>51</td>
</tr>
</tbody>
</table>
8 ZONIFICACIÓN DE AMENAZAS POR FENÓMENOS DE REMOCIÓN EN MASA

8.1 Diagnóstico preliminar de amenazas

8.2 Resultado de análisis

8.3 ANALISIS DE AMENAZA

8.4 Evaluación de Vulnerabilidad

9 EVALUACIÓN Y ANALISIS DE VULNERABILIDAD SOCIAL

9.1 Evaluación componente social, municipio de macanal, vereda serranías

10 OBRAS RECOMENDADAS

11 CONCLUSIONES

12 RECOMENDACIONES

13 BIBLIOGRAFÍA
LISTA DE FIGURAS

Figura 1. Localización geográfica ... 14
Figura 2. Gráfico de precipitación media multianual mensual 35
Figura 3. Gráfico de precipitación media multianual 36
Figura 4. Isoyetas mes de Enero y Febrero ... 37
Figura 5. Isoyetas mes de Marzo y Abril ... 38
Figura 6. Isoyetas mes de Mayo y Junio ... 39
Figura 7. Isoyetas mes de Julio y Agosto .. 40
Figura 8. Isoyetas mes de Septiembre y Octubre 41
Figura 9. Isoyetas mes de Noviembre y Diciembre 42
Figura 10. Comportamiento de las Curvas del Balance Hídrico 50
Figura 11. Imagen ilustrativa de la cuenca regional de Macanal 55
Figura 12. Posiciones aproximadas de las Líneas guía de las regiones latitudinales y las fajas altitudinales del sistema mundial de zonas de vida de Holdridge, (basado en una tasa de cambio de .6°C por cada 1000m) 59
Figura 13. Criterios para la clasificación de los bosques 71
Figura 14. Mapa cobertura vegetal y uso de suelo 76
Figura 15. Áreas de coberturas ... 77
Figura 16. PORCENTAJE DE COBERTURAS 77
Figura 17. Ventana extraída del mapa regional de Consultoría para la Homologación y Estructuración de la Información Cartográfica Base 83
Figura 18. Fotografías pertenecientes al vuelo 2564- 99,100 tomadas por el IGAC, durante los años 90 ... 86
Figura 19. Esquema del movimiento, desprendimiento 87
Figura 20. Esquema del movimiento, perfil desprendimiento 88
Figura 21. Imagen del Mapa de inclinación de las pendientes 89
Figura 22. Imagen del Mapa geomorfológico ... 90
Figura 23. Imagen del Mapa erosión ... 97
Figura 24. Principio teórico de operación de las TER’s 101
Figura 25. Rangos de resistividad para diferentes materiales......................... 102
Figura 26. Dispositivo Wenner. .. 106
Figura 27. Localización líneas de tomografía. .. 109
Figura 28. Perfil 1 tomografía. ... 110
Figura 29. Perfil litológico 1 .. 111
Figura 30. Perfil 2 tomografía. ... 114
Figura 31. Perfil litológico 2 .. 115
Figura 32. Perfil Geotécnico S1... 122
Figura 33. Límites de Atterbeg .. 123
Figura 34. Guía para la definición del Índice geológico de resistencia (GSI). ... 126
Figura 35. Perfil geológico AA’ ... 136
Figura 36. Modelo de análisis perfil A-A’ .. 136
LISTA DE TABLAS

Tabla 1. Tabla general para la determinación de número de curva (CN) 28
Tabla 2. Escorrentía Estación Macanal, suelo tipo CL 30
Tabla 3. Escorrentía Estación Macanal, suelo tipo CL 31
Tabla 4. Estación pluviométrica utilizada en la estimación de la precipitación para el área de estudio ... 32
Tabla 5. Precipitación media multianual mensual por estación 33
Tabla 6. Precipitación media multianual mensual por estación 34
Tabla 7. Rangos de temperatura Macanal ... 35
Tabla 8. Valores de Evapotranspiración ... 44
Tabla 9. Calcular Infiltración, basado en los valores de escorrentía (R) y precipitación (P). Estación Macanal ... 47
Tabla 10. Calcular Infiltración, basado en los valores de escorrentía (R) y precipitación (P). Estación Macanal .. 48
Tabla 11. Estimación del Balance Hídrico ... 49
Tabla 12. Valores de parámetros morfométricos para la cuenca regional 56
Tabla 13. Unidades de cobertura vegetal ... 79
Tabla 14. Clasificación de las pendientes .. 89
Tabla 15. Descripción geomorfológica ... 92
Tabla 16. Resistividades de algunos suelos y rocas 105
Tabla 17. Resistividades de los materiales presentes en el área de estudio 110
Tabla 18. Resistividades de los materiales presentes en el área de estudio 113
Tabla 19. Coordenadas de los sondeos realizados 118
Tabla 20. Resumen de resultados ensayos de laboratorio 128
Tabla 21. Coeficientes de aceleración sísmica para el departamento Boyacá ... 133
Tabla 22. Coeficientes de reducción de coeficientes de aceleración sísmica 133
Tabla 23. Valores de Propiedades Físicas y Mecánicas Utilizadas en los Modelos de estabilidad ... 135
Tabla 24. Factores de seguridad para el modelo perfil B-B' 137
<table>
<thead>
<tr>
<th>Fotografía</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Exploración directa del subsuelo (SPT)</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>Ubicación geográfica</td>
<td>57</td>
</tr>
<tr>
<td>3</td>
<td>Tejido artificializado de nivel 4 red vial.</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>Pastos enmalezados o enrastrados</td>
<td>68</td>
</tr>
<tr>
<td>5</td>
<td>Pastos limpios presente en la zona de estudio</td>
<td>69</td>
</tr>
<tr>
<td>6</td>
<td>Bosque denso bajo</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>Bosque abierto alto</td>
<td>73</td>
</tr>
<tr>
<td>8</td>
<td>Herbazal</td>
<td>75</td>
</tr>
<tr>
<td>9</td>
<td>Rio</td>
<td>76</td>
</tr>
<tr>
<td>10</td>
<td>Vía Macanal</td>
<td>109</td>
</tr>
<tr>
<td>11</td>
<td>Corona del deslizamiento</td>
<td>112</td>
</tr>
<tr>
<td>12</td>
<td>Corona del deslizamiento</td>
<td>112</td>
</tr>
<tr>
<td>13</td>
<td>Perforación realizada en la zona de estudio</td>
<td>119</td>
</tr>
<tr>
<td>14</td>
<td>Prueba de Penetrometro de Bolsillo</td>
<td>120</td>
</tr>
<tr>
<td>15</td>
<td>Muestras a las que se les realizo la prueba de corte directo</td>
<td>125</td>
</tr>
<tr>
<td>16</td>
<td>Parte superior del movimiento</td>
<td>135</td>
</tr>
<tr>
<td>17</td>
<td>Vía a la vereda serranías</td>
<td>147</td>
</tr>
<tr>
<td>18</td>
<td>Vista del movimiento del terreno sobre la vía</td>
<td>148</td>
</tr>
<tr>
<td>19</td>
<td>Afectación de la vía</td>
<td>149</td>
</tr>
<tr>
<td>20</td>
<td>Vista de quebrada el ramal. Parte baja del movimiento</td>
<td>149</td>
</tr>
</tbody>
</table>
INTRODUCCION

Debido a que el Departamento de Boyacá es una de las áreas más vulnerables a los fenómenos de variación climática, y que los picos de precipitación en determinados periodos del año son relativamente altos estos se han convertido en el factor detonante de los diferentes fenómenos de remoción en masa, provocando diversas amenazas, lo que contribuye a que se presente determinada limitación en lo que tiene que ver con la gestión del riesgo y el desarrollo de cada una de las zonas afectadas por este tipo de fenómenos.

En los últimos años el nivel de pluviosidad ha ido en aumento lo que ha hecho que las precipitaciones sean mayores, esto relacionado con el fenómeno de la niña que aunque se presenta una vez al año, contribuye al incremento de caudales en ríos y por supuesto el exceso en recargas e infiltraciones que a su vez alimentan el desarrollo de deslizamientos afectación en laderas, taludes y desprendimiento de rocas, que provocan la erosión, socavamiento en las diferentes geoformas.

Con el desarrollo de este proyecto se pretende procesar la información, analizarla y a partir de esto recomendar el diseño e implementación de obras de mitigación teniendo en cuenta la modelación geotécnica, y así darle solución al problema presente en el área de la Vereda de Serranías Municipio de Macanal.
1 GENERALIDADES

1.1. PRESENTACIÓN (JUSTIFICACIÓN Y ALCANCE)
Ante la permanente ocurrencia de Fenómenos de Remoción en Masa y Eventos Torrenciales en diferentes puntos del país, el Gobierno Nacional, emitió la Ley 99 de 1993, referente a los principios ambientales generales, responsabilidades y funciones de las Corporaciones Regionales y su Numeral 23 que contempla entre otros, el realizar actividades de análisis, seguimiento y control de desastres; en coordinación con las demás autoridades competentes y asistenciales, en los aspectos medioambientales, para la Prevención y Atención de Emergencias y Desastres.

En concordancia con la Ley 1523 de 2012, en la cual se adopta la política Nacional de gestión del Riesgo, sus Decretos reglamentarios, el Decreto 919 de 1998, dispone que dentro del Sistema Nacional para la Atención de Emergencias o Desastres; corresponde al Comité Regional de Prevención y Atención de Desastres CREPAD el manejo de la cobertura departamental y al CLOPAD, cuando trata de eventos municipales.

Siendo las amenazas por movimientos en masa, las más representativas en la generación de riesgos y desastres en 25 zonas de interés delimitadas previamente por parte de la Corporación Autónoma Regional de Chivor CORPOCHIVOR, se requiere una integración de los procesos geológicos exógenos (amenazas), por ser los que mayores impactos han tenido sobre las comunidades, evaluando su ocurrencia antes del Fenómeno de La Niña y durante el mismo, a fin de establecer nuevas áreas involucradas, vulnerabilidades y elementos en riesgo.
Se aclara que, la metodología de evaluación de amenazas propuesto, involucra como detonantes, las precipitaciones, la actividad sísmica y antrópica, por lo que igualmente se hará una revisión de aspectos endógenos como la ocurrencia, magnitud y posibles áreas de afectación de los sismos asociados.

1.1 OBJETIVOS DEL PROYECTO

1.1.1 Objetivo General

Realizar el estudio de riesgo (amenaza y vulnerabilidad) y diseño de obras en la planta de tratamiento de aguas residuales, vereda el tejar, municipio de nuevo colon, área afectada por fenómenos de remoción de masa. Municipio de la jurisdicción de la corporación autónoma regional de chivor (corPOCHIVOR).

1.2. OBJETIVOS DEL PROYECTO

1.2.1. Objetivo General

Realizar el estudio de riesgo (amenaza y vulnerabilidad) y diseño de obras en la Vereda Serranías en el Municipio de Macanal, área afectada por Fenómenos de Remoción en Masa (FRM). Municipio de la Jurisdicción de la Corporación Autónoma Regional de Chivor CORPOCHIVOR.
1.2.2 Metodología

ELABORACIÓN DE ESTUDIO DE RIESGO (AMENAZA Y VULNERABILIDAD) Y DISEÑO DE OBRAS DE ESTABILIZACIÓN EN LA VEREDA SERRANIAS, MUNICIPIO DE MACANAL JURISDICCIÓN DE LA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR (CORPOCHIVOR).
1.3. LOCALIZACIÓN.

Figura 1. Localización geográfica.

Fuente: http://commons.wikimedia.org/wiki/File:Colombia_-_Boyaca_-_Macanal.svg

El área de Estudio se encuentra en las coordenadas N 1047914, E 1093108, a una altura de 1413 msnm; en la Provincia de Neira, en el Municipio de Macanal, en la vereda Serranías.
1.4. PERSONAL

Para el desarrollo de éste proyecto, la UPTC contó con la dirección del Ingeniero Geólogo Carlos Julio Rodríguez, y los profesionales M.s.c. en Geotecnia, Rafael H. Pérez E y así como por los Ingenieros Geólogos, Luis D. Mesa, Edgar Barrera, Danilo H. Gonzalez, Nancy E. Macías Leguizamón, Kristian Rodriguez, Ingeniero Ambiental German Saavedra, Socióloga Diana Chaparro, El Ingeniero topógrafo Jorge Mesa y para el desarrollo de prospección Geoeléctrica se capacito personal que hace parte del convenio, la universidad contrato los servicios de Supervisión Rory Forero, Manuel Romero, Catalina Rodríguez, la interventoría Técnica externa contratada por CorPOCHIVOR.
1.5. DESCRIPCIÓN DE ACTIVIDADES REALIZADAS

En la primera fase de la investigación se hizo el reconocimiento de la zona inestable, estableciendo aspectos geológicos y sectores con similares patrones de desplazamiento, buscando definir la evolución cronológica de la inestabilidad, al igual que su dinámica y una clasificación preliminar de los eventos. Esto sirvió de base para proyectar la exploración del terreno (directa e indirecta) y demás actividades necesarias.

A continuación se relacionan las distintas actividades adelantadas para recopilar toda la información posible y que es la base de los análisis correspondientes.

1.5.1. Trabajo de campo

La exploración del subsuelo y reconocimiento de campo se ejecutó con un procedimiento de exploración directa para conocer las características litológicas y geomecánicas de los materiales removidos con el fin de diseñar los modelos de análisis. Durante la visita de campo al área afectada se llevó a cabo un recorrido con el fin de delimitar el fenómeno de remoción en masa (FRM), a partir de esta recopilación de información definir la zona mediante topografía. De acuerdo con lo observado en relación con la dinámica del movimiento, y los posibles mecanismos de falla, se establecieron los sitios adecuados para realizar la exploración directa del subsuelo, al igual que la realización de Tomografías.

El trabajo de campo consistió en:

Apiques y sondeos geotécnicos. En total, se realizaron 2 apiques geotécnicos y 1 sondeos manuales por SPT (standar penetration test), en los que se tomaron muestras para análisis, cuya profundidad de exploración varió de los 2 a los 10 m (Anexo 3 y figura 2).
Fotografía 1. Exploración directa del subsuelo (SPT)

Fuente: Resultado del estudio.

Levantamiento topográfico: Altimetría y Planimetría de cada uno de los sectores de estudio mediante uso de una estación total. Se incluyó: localización de viviendas, infraestructura visible y en general todo detalle de interés para el estudio delimitación de los deslizamientos.

El trabajo topográfico detallado, se elaboró en escala 1: 1.000.

Levantamiento Geológico y Geotécnico de la zona: Comprende el reconocimiento del lugar, haciendo el levantamiento geológico que permitió conocer la litología, rasgos estructurales, grado de alteración de la roca, depósitos no consolidados y demás detalles de utilidad que sirvieron para crear el modelo geológico local.
(escala 1: 500). Con el fin de conocer en detalle la naturaleza del subsuelo, y la caracterización de cada uno de los FRM se realizó la exploración del subsuelo mediante la realización de apiques, perforaciones.

Tomografías. En el área del estudio se realizaron dos tomografías, que se ubicaron dentro de zona afectada por el Fenómeno de Remoción en Masa (FRM) y el área periférica; los que permitieron identificar parámetros de resistividad del subsuelo, interpretar la litología, definir algunas características hidrogeológicas y geotécnicas (anexo 2).

Diagnóstico estructural de viviendas. Se realizó un inventario de tres (3) viviendas, cualificando la afectación del fenómeno de remoción en masa (FRM), en aspectos estructurales, en donde se resaltó la presencia de fisuras en pisos y paredes (anexo 5). Se averiguó con los habitantes del sector acerca de la manifestación y evolución en el tiempo del fenómeno de remoción en masa (FRM), al igual que su relación con la ocurrencia de lluvias intensas o eventos sísmicos.

1.6. ANÁLISIS DE LABORATORIO.
En los laboratorios de Petrografia y Mecánica de Suelos y Rocas de la UPTC Sede Sogamoso se realizaron los ensayos necesarios para clasificación de suelos a las muestras recogidas en los apiques y sondeos. Los ensayos ejecutados fueron: Caracterización Petrográfica, límites de Atterberg, granulometría, humedad natural, peso unitario, compresión inconfinada, Corte Directo, Coeficiente de Permeabilidad Propiedades Físicas, Tilt Test, Carga por punta, Angulo de reposo.
1.6.1. Trabajos de Oficina
Los trabajos de oficina incluyeron las actividades que se relacionan a continuación:

- Recopilación y revisión de información,
- Procesamiento y análisis de resultados,
- Concepción del modelo de secuencia cronológica de los distintos eventos ocurridos,
- Definición del mapa de Amenazas por movimientos en masa,
- Análisis de estabilidad para las zonas homogéneas definidas,
- Planteamiento de obras de control, manejo y recuperación del área afectada.

Las planchas geológicas del IGAC tomadas en cuenta, fueron la 191 y 210, a escala 1:100.000.; los datos de pluviometría del IDEAM de los años de 1982 a 2012, de la estación de Macanal.

1.7. DESCRIPCIÓN DEL PROBLEMA Y SUS POSIBLES CAUSAS
En el área de la jurisdicción de CORPOCHIVOR se registran situaciones de amenaza en sitios que presentan evidencias de condiciones de riesgo inminente, para lo cual la Corporación Autónoma Regional de Chivor - CORPOCHIVOR ha hecho un reconocimiento de sitios críticos de riesgo por fenómenos naturales y antrópicos, para intervención con medidas de mitigación de riesgo. Por tal motivo, se requiere disponer de conceptos técnicos de ingeniería geológica que garanticen la aplicación de criterios necesarios para realizar el diseño de obras de protección, mitigación y corrección de los efectos de los fenómenos de remoción en masa existentes.
El estudio incluye análisis geológicos y geotécnicos necesarios para realizar el análisis de ingeniería y el diseño detallado de la alternativa seleccionada junto con los cálculos de cantidades de obra, presupuesto y especificaciones técnicas.

1.8. ESTADO DE LA INFORMACIÓN

Mediante la evaluación de estudios suministrados por parte de la Universidad Pedagógica y Tecnológica de Colombia, Facultad Seccional Sogamoso, Escuela de Ingeniería Geológica, así como por la Corporación Autónoma Regional de Chivor (CORPOCHIVOR) se logró identificar información primaria, de diferentes temáticas necesarias para el desarrollo de análisis y procesamiento básico de parámetros en aras de dar cumplimiento a los objetivos propuestos para el presente estudio.

La información recopilada tuvo en cuenta aspectos tales como:

- Localización del estudio.
- Geología, Geomorfología.
- Hidrología y Climatología.
- Suelos y uso actual del suelo.
- Información Geofísica: sísmica, geoelectrónica, sondeos eléctricos verticales, perfiles y registros eléctricos.
- Hidrogeológica: Inventario de puntos de agua, niveles de agua, cartografía hidrogeológica, balance hídrico.
Después de llevar a cabo el análisis de la información base de apoyo se procedió a evaluar y calificar el grado de confiabilidad de la misma, con la finalidad de clasificar, seleccionar y depurar determinada información.
2 ASPECTOS CLIMATICOS E HIDROLOGICOS

Desde el punto de vista biofísico, el clima es importante por su directa intervención en la evolución de los suelos y el paisaje. También por ser uno de los elementos o insumos necesarios para la determinación de las amenazas naturales y desde el punto de vista socioeconómico, por la influencia en la decisión de utilización de las tierras para determinados usos específicos utilizando el territorio.

Según la clasificación de Köppen, el área de estudio presenta un clima de tipo EH: Frío de alta montaña. Al igual que todas las regiones de la Zona Intertropical, el clima está influenciado solamente por la altitud y las corrientes oceánicas que causan leves variaciones de temperatura, las más significativas entre el día y la noche.

Cuenta con dos periodos de baja precipitación (Diciembre a Marzo y Julio a Septiembre) y dos periodos lluviosos (Abril a Junio y Octubre a Noviembre), que varían su intensidad según la influencia de los fenómenos de la Corriente de Humboldt que se presentan cada 2 o 3 años en los países del norte de Sudamérica.

El control climático está afectado principalmente por el factor altitud, común en la región tropical. La altitud a la que se encuentra, hace que se presente piso térmico frío montano bajo. Ocasionalmente corresponde a temperaturas entre los 10 y 15.5°C pero que ocasionalmente, pueden llegar a variar entre 4.5° en horas de la noche y 20.2°C en el medio día.
Se pueden definir dos periodos secos y dos lluviosos con precipitaciones promedio entre 700 y 900 mm anuales.

La presencia de vientos alisos que provienen de la región amazónica con características húmedas, penetran en los meses de Julio y Agosto haciendo que estos meses sean lluviosos.

2.1. ANÁLISIS HIDROLÓGICO
El análisis hidrológico tiene como punto de partida la delimitación de subcuencas de tal manera que se determinen los parámetros morfométricos correspondientes, para posteriormente establecer la relación directa con datos pertenecientes al balance hídrico dentro del contexto mensual multianual. De esta forma es posible establecer aspectos básicos indicativos y preliminares para determinar las áreas de mayor interés respecto a la relación de infiltración y evapotranspiración.

2.2. BALANCE HÍDRICO.
Para estimar las reservas del agua subterránea de los sistemas acuíferos que se extienden subsuperficialmente y en el subsuelo dentro del área de estudio perteneciente al municipio de Macanal y sus alrededores, se debe evaluar la magnitud de la recarga potencial proveniente de la precipitación a través de los suelos teniendo en cuenta espacial y temporalmente la magnitud de la escorrentía, la evapotranspiración y la variaciones de contenido de humedad de los suelos de cada una de las cuencas y/o subcuencas involucradas en el área de estudio. Por tal razón se hace necesaria la estimación de la escorrentía superficial, evapotranspiración y valores de precipitación media mensual multianual en cada una de las subcuencas, lo que permitirá estimar el Balance Hídrico con el fin de obtener la oferta total de agua subterránea y superficial.
La información obtenida puede ser utilizada para evaluar los recursos hídricos del área de trabajo (calidad, cantidad y distribución en tiempo y espacio), además de la capacidad para el suministro y satisfacción de la demanda; así mismo se pueden proyectar y diseñar proyectos relacionados con el agua, planificar buenas estrategias de gestión del recurso hídrico; de la misma forma es de gran importancia que exista una actualización de las redes de datos en las estaciones en la zona de trabajo que permitan tomar los datos reales del comportamiento de las diferentes variables que se utilizan para la estimación del balance hídrico.

La recarga a un acuífero puede definirse como el agua que alcanza las reservas subterráneas. Este concepto es importante para estudios de recursos hídricos y para determinar el comportamiento de ciertos contaminantes que puedan llegar a presentarse en un momento dado.

2.2.1. Tipos de recarga

La recarga a un acuífero puede darse naturalmente debido a la precipitación, a las aguas superficiales, es decir, a través de ríos y lagos, o por medio de transferencias desde otras unidades hidrogeológicas o acuíferos; pero también puede darse de manera artificial producto de actividades como la irrigación, fugas de redes de abastecimiento o por infiltraciones de embalses y depósitos (Balek, 1988; Custodio, 1997; Simmers, 1990; Lerner, 1990; Samper, 1997).

Lerner propone una clasificación similar pero un poco más completa sobre las fuentes de recarga:

1. Recarga directa o recarga difusa, proveniente del agua lluvia.
2. Recarga concentrada o indirecta, producto de cauces permanentes, estacionales y efímeros.

3. Flujos laterales, procedentes de otros acuíferos

4. Retorno de riegos, excesos de riegos o las pérdidas en los canales de distribución

5. Recarga Urbana, producto de fugas de redes de desabastecimiento y redes de alcantarillado.

Lerner (1990) y luego Simmers (1997) definen la recarga localizada como una categoría intermedia la cual implica un movimiento horizontal del agua antes de que termine el proceso de recarga.

La recarga puede determinarse por varios métodos, y se clasifican en 5 grupos:

Medidas directas: La recarga se mide directamente mediante la construcción de lisímetros. Un lisímetro es un bloque de suelo dotado de dispositivos que permiten medir el flujo que drena hasta el acuífero.

Balance hídrico: Se determinan los flujos de entrada y de salida de un sistema, y la recarga al acuífero constituye el residuo de la ecuación de balance; hacen parte de este grupo los balances de humedad del suelo, de agua en canales, el método de fluctuaciones del nivel freático y el que iguala la descarga a la recarga.
Trazadores: Su principal uso es determinar fuentes de recarga y zonas de descarga aunque se utilizan para cuantificar la recarga a través de un balance de masa del trazador.

Aproximaciones de Darcy: Se encuentran valores de cabezas hidráulicas a partir de las ecuaciones de flujo de Richards y Boussinesq y luego se determina la velocidad de filtración. Si se asumen condiciones estables la recarga se determina directamente de la ecuación de Darcy.

Empíricos: Consiste en el desarrollo de ecuaciones empíricas que relacionan la recarga con alguna variable como la precipitación.

2.3. ESTIMACIÓN DE LA ESCORRENTÍA

La escorrentía superficial se estima con el fin de conocer las variaciones espaciales y temporales de los caudales que drenan por los cauces de las cuencas o subcuencas delimitadas para el área de estudio, y su magnitud está condicionada por la precipitación, las características físicas y estructurales del suelo, además de la influencia de otros factores como son la pendiente, el tipo de uso asociado a éste, la densidad y tipo de cobertura vegetal.

Para tal fin el Servicio de Conservación de Suelos de los Estados Unidos de Norteamérica (USSCS) desarrolló un método directo de estimación del escurrimiento que integra la intercepción, infiltración y el almacenamiento en pequeñas depresiones, excepto la evapotranspiración potencial, en una sola abstracción. El método, conocido como Número de Curva, establece que la relación lluvia-escurrimiento es una función del tipo de suelo, uso del suelo y de condiciones hidrológicas (Chow et al., 1964; USDA, 1986).
La estimación del escurrimiento superficial por el método de Número de Curva se realiza con la siguiente ecuación:

$$Q = \frac{(P - 0.2S)^2}{(P + 0.8S)}$$

Dónde:
S= (25400/CN)-254
P= Precipitación
CN= Número de curva (tablas)
Q= Escorrentía

En el método de la Curva Numérica cada tipo o clase de suelo es asignado a un grupo hidrológico. Los grupos hidrológicos se basan fundamentalmente en la capacidad de infiltración, la cual puede relacionarse con la conductividad hidráulica saturada de la superficie del suelo. La información cartográfica de suelos, y los mapas de cobertura vegetal y uso de suelo fueron reclasificadas. La cobertura vegetal y uso del suelo se reclassificó como cobertura/tratamiento y condición hidrológica. La información de suelos se reclassificó con objeto de generar el mapa de grupos hidrológicos de suelo.

La información anteriormente descrita constituye los principales insumos del método de Sistema de Clasificación de Suelos (SCS), para la estimación del número de curva, que representa un coeficiente de escurrimiento para una zona, o una cuenca hidrológica (ver Tabla 1) (Chow et al., 1994; USDA, 1986).
<table>
<thead>
<tr>
<th>Tipo de vegetación</th>
<th>Tratamiento</th>
<th>Condición Hidrológica</th>
<th>Tipo de suelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbecho</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desnudo</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>CR</td>
<td>Pobre</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>CR</td>
<td>Buena</td>
<td>74</td>
</tr>
<tr>
<td>Cultivos alineados</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>Pobre</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>Buena</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>R + CR</td>
<td>Pobre</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>R + CR</td>
<td>Buena</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>Buena</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Buena</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>C + CR</td>
<td>Pobre</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>C + CR</td>
<td>Buena</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>C + T</td>
<td>Pobre</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>C + T</td>
<td>Buena</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>C + T + CR</td>
<td>Pobre</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>C + T + CR</td>
<td>Buena</td>
<td>61</td>
</tr>
<tr>
<td>Cultivos no alineados, o con surcos pequeños o mal definidos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>Pobre</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>Buena</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>R + CR</td>
<td>Pobre</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>R + CR</td>
<td>Buena</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Pobre</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Buena</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>C + CR</td>
<td>Pobre</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>C + CR</td>
<td>Buena</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>C + T</td>
<td>Pobre</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>C + T</td>
<td>Buena</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>C + T + CR</td>
<td>Pobre</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>C + T + CR</td>
<td>Buena</td>
<td>58</td>
</tr>
<tr>
<td>Cultivos densos de leguminosas o prados en alternancia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>Pobre</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>Buena</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Pobre</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Buena</td>
<td>55</td>
</tr>
</tbody>
</table>
Nota:

Pastizales o pastos naturales

<table>
<thead>
<tr>
<th>C + T</th>
<th>Pobre</th>
<th>Buena</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pobres</td>
<td>68</td>
<td>79</td>
</tr>
<tr>
<td>Regulares</td>
<td>49</td>
<td>69</td>
</tr>
<tr>
<td>Buenas</td>
<td>39</td>
<td>61</td>
</tr>
</tbody>
</table>

Pastizales

<table>
<thead>
<tr>
<th>C</th>
<th>Pobres</th>
<th>Buena</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pobres</td>
<td>47</td>
<td>67</td>
</tr>
<tr>
<td>Regulares</td>
<td>25</td>
<td>59</td>
</tr>
<tr>
<td>Buenas</td>
<td>6</td>
<td>35</td>
</tr>
</tbody>
</table>

Prados permanentes

| - | - | 30 | 58 | 71 | 78 |

Matorral-herbazal, siendo el matorral preponderante

-	Pobres	48	67	77	83
-	Regulares	35	56	70	77
-	Buenas	≤30	48	65	73

Combinación de arbolado y herbazal, cultivos agrícolas leñosos

-	Pobres	57	73	82	86
-	Regulares	43	65	76	82
-	Buenas	≤30	48	65	73

Montes con pastos (aprovechamiento silvopastorales)

-	Pobres	45	66	77	83
-	Regulares	36	60	73	79
-	Buenas	25	55	70	77

Bosques

-	I Muy pobre	56	75	86	91
-	II Pobre	46	68	78	84
-	III Regular	36	60	70	76
-	IV Buena	26	52	63	69
-	V Muy buena	15	44	54	61

Caseríos

| - | 59 | 74 | 82 | 86 |

Caminos en tierra

| - | 72 | 82 | 87 | 89 |

Caminos con firme

| - | 74 | 84 | 90 | 92 |

Fuente: Chow et al., 1994; USDA, 1986

Dónde:

CR= Con cubierta de residuos vegetales que ocupe al menos el 5% de la superficie del suelo durante todo el año.
R= Si las labores de la tierra (labrar, gradear, sembrar, etc.) se realizan en línea recta, sin considerar la pendiente del terreno.
C= Si el cultivo se realiza siguiendo las curvas de nivel.
T= Si se trata de terrenos aterrazados (terrazas abiertas con desagüe para la conservación de suelos).

Tabla 2. Escorrentía Estación Macanal, suelo tipo CL

<table>
<thead>
<tr>
<th>P</th>
<th>R</th>
<th>S CL (C)</th>
<th>CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>74,70833333</td>
<td>26,1759055</td>
<td>75,8701299</td>
<td>77</td>
</tr>
<tr>
<td>190,25</td>
<td>122,1441425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>167,9916667</td>
<td>102,1184091</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128,0333333</td>
<td>67,48932993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>208,8833333</td>
<td>139,1919805</td>
<td></td>
<td></td>
</tr>
<tr>
<td>187,8166667</td>
<td>119,9354114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>171,7666667</td>
<td>105,4846549</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172,925</td>
<td>106,5202132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>185,1666667</td>
<td>117,5350698</td>
<td></td>
<td></td>
</tr>
<tr>
<td>186,2416667</td>
<td>118,5081473</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120,1083333</td>
<td>60,90120923</td>
<td></td>
<td></td>
</tr>
<tr>
<td>193,5583333</td>
<td>125,154005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>184,15</td>
<td>116,6156183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>197,6416667</td>
<td>128,8794892</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200,7916667</td>
<td>131,7610704</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172,8916667</td>
<td>106,490396</td>
<td></td>
<td></td>
</tr>
<tr>
<td>237,875</td>
<td>166,1102605</td>
<td></td>
<td></td>
</tr>
<tr>
<td>175,4166667</td>
<td>108,7518639</td>
<td></td>
<td></td>
</tr>
<tr>
<td>196,7916667</td>
<td>128,1030448</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Resultado del estudio
2.4. ESTIMACIÓN DE LA PRECIPITACIÓN.

El conocimiento de la variación espacial y temporal de la precipitación y su magnitud se realiza con el fin de evaluar las observaciones cuando se toman muestras de un evento de precipitación o de una serie de eventos. La evaluación de la muestra observada incluye el examen de influencias externas, como pueden ser las que puedan tener los instrumentos de medición, y también se debe tener en cuenta la interpretación de los efectos del medio ambiente físico, como la fisiografía.

Con el fin de conocer el comportamiento de este parámetro hidroclimatológico se utilizaron los datos de 1 estación climatológica (Tabla 4) las cuales se encuentran ubicadas dentro y en áreas colindantes del área de estudio del presente convenio. Con el propósito de obtener el valor (mm) de precipitación media mensual multianual de la zona de estudio se utilizaron los datos mensuales de las
estaciones seleccionadas para un periodo de 53 años (1959-2012), estos se utilizaron junto con los datos promedio mensuales multianuales de escorrentía y evapotranspiración para estimar el balance hídrico de las subcuencas del área de estudio.

Tabla 4. Estación pluviométrica utilizada en la estimación de la precipitación para el área de estudio.

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>NOMBRE ESTACION</th>
<th>CORRIENTE</th>
<th>NOMBRE DEPARTAMENTO</th>
<th>NOMBRE MUNICIPIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>3507012</td>
<td>MACANAL</td>
<td>RIO BATA</td>
<td>BOYACA</td>
<td>MACANAL</td>
</tr>
</tbody>
</table>

Fuente: Resultado del estudio

En la Tabla 5 se presentan los valores de precipitación medios mensuales multianuales (mm) para cada una de las estaciones delimitadas dentro del área de estudio, información que se utilizó para la estimación de la recarga de agua para la Formación Luititas de Macanal (Kilm) que se delimita y que hace parte del área del presente convenio.
Tabla 5. Precipitación media multianual mensual por estación.

<table>
<thead>
<tr>
<th>NOMBRE ESTACIÓN</th>
<th>ENE</th>
<th>FEB</th>
<th>MAR</th>
<th>ABR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AGO</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DIC</th>
<th>PROMEDIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACANAL</td>
<td></td>
<td>74,70833333</td>
</tr>
<tr>
<td>MACANAL</td>
<td>11,9</td>
<td>226,1</td>
<td>141,2</td>
<td>295,8</td>
<td>192,9</td>
<td>292,0</td>
<td>335,6</td>
<td>328,1</td>
<td>196,9</td>
<td>194,8</td>
<td>36,0</td>
<td>31,7</td>
<td>190,25</td>
</tr>
<tr>
<td>MACANAL</td>
<td>14,9</td>
<td>97,5</td>
<td>41,2</td>
<td>183,7</td>
<td>147,7</td>
<td>474,4</td>
<td>356,1</td>
<td>361,9</td>
<td>186,2</td>
<td>52,2</td>
<td>83,2</td>
<td>16,9</td>
<td>167,9916667</td>
</tr>
<tr>
<td>MACANAL</td>
<td>11,3</td>
<td>71,6</td>
<td>424,6</td>
<td>282,9</td>
<td>268,9</td>
<td>199,4</td>
<td>176,1</td>
<td>86,7</td>
<td>14,9</td>
<td>128,0333333</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MACANAL</td>
<td>8,7</td>
<td>54,7</td>
<td>100,3</td>
<td>187,4</td>
<td>315,5</td>
<td>434,8</td>
<td>395,1</td>
<td>343,8</td>
<td>244,1</td>
<td>258,2</td>
<td>107,7</td>
<td>56,3</td>
<td>208,8333333</td>
</tr>
<tr>
<td>MACANAL</td>
<td>24,8</td>
<td>135,7</td>
<td>110,8</td>
<td>174,8</td>
<td>286,2</td>
<td>316,1</td>
<td>405,3</td>
<td>318</td>
<td>190,7</td>
<td>146,5</td>
<td>49,2</td>
<td>95,7</td>
<td>187,8166667</td>
</tr>
<tr>
<td>MACANAL</td>
<td>0,2</td>
<td>43,3</td>
<td>32,4</td>
<td>249,7</td>
<td>331,8</td>
<td>292,7</td>
<td>352,1</td>
<td>213,2</td>
<td>206,9</td>
<td>183,4</td>
<td>110,8</td>
<td>44,7</td>
<td>171,7666667</td>
</tr>
<tr>
<td>MACANAL</td>
<td>35,5</td>
<td>56,4</td>
<td>59,3</td>
<td>87,4</td>
<td>421,4</td>
<td>270,3</td>
<td>404,0</td>
<td>225,9</td>
<td>223,8</td>
<td>169,0</td>
<td>107,7</td>
<td>14,4</td>
<td>172,925</td>
</tr>
<tr>
<td>MACANAL</td>
<td>35,5</td>
<td>33,1</td>
<td>157,8</td>
<td>139,4</td>
<td>357,0</td>
<td>374</td>
<td>336,5</td>
<td>257,6</td>
<td>158,9</td>
<td>147,5</td>
<td>95,4</td>
<td>129,3</td>
<td>185,1666667</td>
</tr>
<tr>
<td>MACANAL</td>
<td>2,8</td>
<td>67,2</td>
<td>57,9</td>
<td>171,4</td>
<td>265,2</td>
<td>353,3</td>
<td>479,3</td>
<td>401,0</td>
<td>183,5</td>
<td>180,4</td>
<td>68,6</td>
<td>4,3</td>
<td>186,2416667</td>
</tr>
<tr>
<td>MACANAL</td>
<td>26,7</td>
<td>36,8</td>
<td>30,9</td>
<td>256,7</td>
<td>243,0</td>
<td>154,0</td>
<td>361,0</td>
<td>332,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MACANAL</td>
<td></td>
<td>193,5583333</td>
</tr>
<tr>
<td>MACANAL</td>
<td>13,7</td>
<td>51,5</td>
<td>94,6</td>
<td>176,3</td>
<td>422,3</td>
<td>289,8</td>
<td>347,6</td>
<td>340,0</td>
<td>166,0</td>
<td>149,0</td>
<td>113,0</td>
<td>46,0</td>
<td>184,15</td>
</tr>
<tr>
<td>MACANAL</td>
<td>112,0</td>
<td>2,0</td>
<td>79,0</td>
<td>228,0</td>
<td>353,0</td>
<td>404,9</td>
<td>244,8</td>
<td>416,4</td>
<td>279,3</td>
<td>127,6</td>
<td>71,9</td>
<td>52,8</td>
<td>197,6416667</td>
</tr>
<tr>
<td>MACANAL</td>
<td>19,1</td>
<td>142,0</td>
<td>96,0</td>
<td>173,8</td>
<td>298,7</td>
<td>356,0</td>
<td>342,1</td>
<td>261,0</td>
<td>287,1</td>
<td>200,9</td>
<td>133,1</td>
<td>99,7</td>
<td>200,7916667</td>
</tr>
<tr>
<td>MACANAL</td>
<td>39,2</td>
<td>94,7</td>
<td>40,1</td>
<td>167,3</td>
<td>358,1</td>
<td>287,6</td>
<td>494,4</td>
<td>287,2</td>
<td>132,5</td>
<td>90,2</td>
<td>62,4</td>
<td>21</td>
<td>172,8916667</td>
</tr>
<tr>
<td>MACANAL</td>
<td>13,6</td>
<td>167,7</td>
<td>151,3</td>
<td>270,2</td>
<td>458,6</td>
<td>557</td>
<td>601,6</td>
<td>199,7</td>
<td>159,5</td>
<td>154,4</td>
<td>62,6</td>
<td>58,3</td>
<td>237,875</td>
</tr>
<tr>
<td>MACANAL</td>
<td>51,7</td>
<td>104,9</td>
<td>87,9</td>
<td>336,6</td>
<td>226,9</td>
<td>303,1</td>
<td>312,6</td>
<td>139,3</td>
<td>198,3</td>
<td>231,2</td>
<td>69,4</td>
<td>43,1</td>
<td>175,4166667</td>
</tr>
<tr>
<td>MACANAL</td>
<td>33,1</td>
<td>55,3</td>
<td>71,9</td>
<td>148,0</td>
<td>368,3</td>
<td>327,4</td>
<td>412,0</td>
<td>395,7</td>
<td>225,0</td>
<td>166,5</td>
<td>84,4</td>
<td>73,9</td>
<td>196,7916667</td>
</tr>
</tbody>
</table>

Fuente: Resultado del estudio.
Tabla 6. Precipitación media multianual mensual por estación.

<table>
<thead>
<tr>
<th>MACANAL</th>
<th>14,2</th>
<th>18,1</th>
<th>81,1</th>
<th>175,6</th>
<th>282,3</th>
<th>306,5</th>
<th>264,9</th>
<th>318,8</th>
<th>243,2</th>
<th>106,9</th>
<th>124,2</th>
<th>93,4</th>
<th>169,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACANAL</td>
<td>15,2</td>
<td>25,1</td>
<td>117,3</td>
<td>213,0</td>
<td>436,3</td>
<td>374,5</td>
<td>397,6</td>
<td>417,6</td>
<td>242,9</td>
<td>136,7</td>
<td>89,7</td>
<td>34,7</td>
<td>208,3833333</td>
</tr>
<tr>
<td>MACANAL</td>
<td>42,3</td>
<td>25,9</td>
<td>139,0</td>
<td>170,0</td>
<td>347,8</td>
<td>333,9</td>
<td>376,5</td>
<td>285,5</td>
<td>191,1</td>
<td>112,0</td>
<td>172,4</td>
<td>57,8</td>
<td>187,5</td>
</tr>
<tr>
<td>MACANAL</td>
<td>3,4</td>
<td>68,9</td>
<td>98,0</td>
<td>159,6</td>
<td>506,1</td>
<td>537,3</td>
<td>356,5</td>
<td>346,6</td>
<td>186,7</td>
<td>145,2</td>
<td>104,8</td>
<td>32,9</td>
<td>212,1666667</td>
</tr>
<tr>
<td>MACANAL</td>
<td>41,5</td>
<td>112,9</td>
<td>114,1</td>
<td>211,8</td>
<td>416,2</td>
<td>249,9</td>
<td>266,9</td>
<td>335,3</td>
<td>272,4</td>
<td>230,0</td>
<td>138,7</td>
<td>14,5</td>
<td>200,35</td>
</tr>
<tr>
<td>MACANAL</td>
<td>83,2</td>
<td>12,3</td>
<td>179,6</td>
<td>230,8</td>
<td>249,1</td>
<td>459,7</td>
<td>308,3</td>
<td>266,7</td>
<td>127,1</td>
<td>153,9</td>
<td>87,8</td>
<td>55,8</td>
<td>184,525</td>
</tr>
<tr>
<td>MACANAL</td>
<td>3,5</td>
<td>50,7</td>
<td>121,2</td>
<td>210,4</td>
<td>322,6</td>
<td>352,0</td>
<td>160,1</td>
<td>316,5</td>
<td>236,7</td>
<td>120,3</td>
<td>115,7</td>
<td>65,7</td>
<td>172,95</td>
</tr>
<tr>
<td>MACANAL</td>
<td>19,1</td>
<td>21,2</td>
<td>55,9</td>
<td>85,4</td>
<td>254,7</td>
<td>484,8</td>
<td>310,1</td>
<td>205,1</td>
<td>225,9</td>
<td>171,7</td>
<td>191,5</td>
<td>30</td>
<td>171,2833333</td>
</tr>
<tr>
<td>MACANAL</td>
<td>34,5</td>
<td>14,4</td>
<td>83,6</td>
<td>162,9</td>
<td>139,6</td>
<td>350,6</td>
<td>249,2</td>
<td>318,6</td>
<td>168,3</td>
<td>185,6</td>
<td>61,1</td>
<td>15,1</td>
<td>148,625</td>
</tr>
<tr>
<td>MACANAL</td>
<td>3,4</td>
<td>43,1</td>
<td>213,1</td>
<td>218,8</td>
<td>323,1</td>
<td>254,4</td>
<td>283,4</td>
<td>220,3</td>
<td>100,6</td>
<td>144,9</td>
<td>211,9</td>
<td>97</td>
<td>175,1666667</td>
</tr>
<tr>
<td>MACANAL</td>
<td>11,8</td>
<td>51,1</td>
<td>116,6</td>
<td>212,0</td>
<td>338,5</td>
<td>315,5</td>
<td>226,3</td>
<td>232,1</td>
<td>286,9</td>
<td>190,2</td>
<td>135,4</td>
<td>48,1</td>
<td>180,375</td>
</tr>
<tr>
<td>MACANAL</td>
<td>24,4</td>
<td>60,1</td>
<td>326,2</td>
<td>276,7</td>
<td>360,9</td>
<td>350,0</td>
<td>491,0</td>
<td>362,8</td>
<td>168,4</td>
<td>174,2</td>
<td>90,5</td>
<td>83,8</td>
<td>230,75</td>
</tr>
</tbody>
</table>

Fuente: Resultado del estudio

ELABORACIÓN DE ESTUDIO DE RIESGO (AMENAZA Y VULNERABILIDAD) Y DISEÑO DE OBRAS DE ESTABILIZACION EN LA VEREDA SERRANIAS, MUNICIPIO DE MACANAL JURISDICCIÓN DE LA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR (CORPOCHIVOR).
La precipitación media del área de estudio presenta un comportamiento bimodal, que muestra dos periodos de precipitación alta comprendidos en los meses Mayo-Junio y Julio-Agosto (Figura 2) y dos periodos de sequía comprendidos en los meses Noviembre – Diciembre, Enero- Febrero.

Figura 2. Gráfico de precipitación media multianual mensual.
El comportamiento de la precipitación promedio anual, para los años 1982, 1985, 1992, 2009 (Figura 3) se encuentran valores que varían entre los 70 - 150 mm, en los años 1984 -1988 -1999 – 2001 – 2007 – 2010 se encuentran valores que varían entre los170 - 190 mm y los años restantes se presentan valores que varían entre 190 - 240 mm.
2.4.1. Mapas de Isoyetas generados a partir de los datos de Precipitación.

Figura 4. Isoyetas mes de Enero y Febrero

Fuente: Resultado del estudio

El comportamiento de la precipitación para el mes de Enero correspondiente al área de estudio presenta valores que varían entre los 14 y 24 mm.

El comportamiento de la precipitación para el mes de Febrero correspondiente al área de estudio presenta valores que varían entre los 10 y 30 mm.
Figura 5. Isoyetas mes de Marzo y Abril

El comportamiento de la precipitación para el mes de Marzo correspondiente al área de estudio presenta valores que varían entre los 180 y 210 mm.

El comportamiento de la precipitación para el mes de Abril correspondiente al área de estudio presenta valores que varían entre los 215 y 240 mm.

Fuente: Resultado del estudio
El comportamiento de la precipitación para el mes de Mayo correspondiente al área de estudio presenta valores que varían entre los 270 y 285 mm.

El comportamiento de la precipitación para el mes de Junio correspondiente al área de estudio presenta valores que varían entre los 370 y 385 mm.

Fuente: Resultado del estudio
Figura 7. Isoyetas mes de Julio y Agosto

El comportamiento de la precipitación para el mes de Julio correspondiente al área de estudio presenta valores que varían entre los 410 y 420 mm.

El comportamiento de la precipitación para el mes de Agosto correspondiente al área de estudio presenta valores que varían entre los 310 y 330 mm.
El comportamiento de la precipitación para el mes de Septiembre correspondiente al área de estudio presenta valores que varían entre los 210 y 225 mm.

El comportamiento de la precipitación para el mes de Octubre correspondiente al área de estudio presenta valores que varían entre los 145 y 155 mm.
Figura 9. Isoyetas mes de Noviembre y Diciembre

Fuente: Resultado del estudio

El comportamiento de la precipitación para el mes de Noviembre correspondiente al área de estudio presenta valores que varían entre los 60 y 75 mm.

El comportamiento de la precipitación para el mes de Diciembre correspondiente al área de estudio presenta valores que varían entre los 34 y 42 mm.
2.4.2. ESTIMACIÓN DE LA EVAPOTRANSPIRACIÓN POTENCIAL (ETP)

2.4.2.1. Formula de J. B. García y J.D. López.

Esta fórmula, de acuerdo a los resultados obtenidos en campo es aconsejable tenerla en cuenta para este tipo de estudios. Además ha sido evaluada, junto con la de L. Turc, como de las mejores para el cálculo de ETP en esta zona, según estudio comparativo de fórmulas de ETP potencial realizado por la CAR, en el que se evaluó el índice estacional, el coeficiente de correlación y su relación porcentual.

\[
ETP = 1,21 \times 10^n \times (1-0,01\times HR) +0,21 \times T - 2,30 \text{ (mm)}
\]

Dónde:

ETP: Evapotranspiración
T: Temperatura media del aire en grados Celsius
HR: Humedad relativa media (%)

\[
n = \frac{7,45 \times T}{234,7 + T}
\]

\[
HR = \frac{HR: 8 \text{ Horas} + HR : 14 \text{ Horas}}{2}
\]

Esta fórmula fue diseñada para las regiones situadas en un régimen tropical, dentro del rango latitudinal: 15°N -15°S. Con grado de exactitud del 88 %. Los cálculos efectuados en la aplicación de la formula se hicieron en un rango mensual con el objeto de observar su variación y evaluar la ETP promedio.
Se tomaron cuatro rangos de temperatura que varían de acuerdo a los periodos de precipitaciones, durante cada año.

Tabla 7. Rangos de temperatura Macanal.

<table>
<thead>
<tr>
<th>Período</th>
<th>Temperatura (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.5</td>
</tr>
<tr>
<td>2</td>
<td>17.2</td>
</tr>
<tr>
<td>3</td>
<td>18.3</td>
</tr>
</tbody>
</table>

Fuente: Resultado del estudio

El valor de la humedad relativa (HR) se toma del POT del municipio de Macanal, que corresponde al valor del 85 %. De donde obtenemos:

Tabla 8. Valores de Evapotranspiración

<table>
<thead>
<tr>
<th>ETP1</th>
<th>ETP2</th>
<th>ETP3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,86694</td>
<td>5,182544</td>
<td>5,69207807</td>
</tr>
</tbody>
</table>

Fuente: Resultado del estudio

2.4.3. Estimación del Balance Hídrico
La estimación del balance hídrico para la zona de estudio se realizó partiendo de los resultados del cálculo de precipitación, escorrentía y evapotranspiración media mensual multianual. Para poder calcular los valores de recarga potencial para las cuencas del río Bata, esta recarga se estimó por medio del balance hídrico con base en los valores promedios mensuales de precipitación, evapotranspiración potencial y escorrentía calculada por el método de número de curva de...
escorrentía, el cual utiliza los parámetros de cobertura vegetal, Índice de infiltración del suelo, condición hidrogeológica.

- **Herramientas y métodos.**

- Los datos de infiltración obtenidos mediante la ponderación de los datos proporcionados por el IDEAM.

- Datos de precipitación obtenidos de las estaciones pluviométricas y de evaporación del IDEAM.

2.4.4. Metodología

La metodología utilizada para el cálculo de la recarga.

- Se realiza un procesamiento de los datos de las estaciones pluviométricas del IDEAM, generando tablas de precipitación media y mensual con el comportamiento multitemporal de las precipitaciones.

- Generación de tablas de evapotranspiración media con el comportamiento multitemporal de la evapotranspiración, a partir de los datos de temperatura del IDEAM, aplicando la Fórmula de J. B. García y J.D. López. para el cálculo de la evapotranspiración.

- Se calcula el número de curva para cada categoría con características iguales de cobertura, velocidad de infiltración, condición hidrológica y uso del suelo.
Con la ecuación propuesta por el Servicio de Conservación de Suelos de los Estados Unidos de Norteamérica se calcula la escorrentía para cada categoría y microcuenca, que utiliza el número de curva de escorrentía y la precipitación media mensual como variables.

Se realiza un balance hídrico, con los datos de precipitación, escorrentía, evapotranspiración para encontrar la cantidad de recarga, siguiendo las normas del IDEAM.

Cálculo del balance hídrico.

El método consiste en hacer un balance para un periodo de tiempo determinado. El balance se puede expresar de la siguiente forma:

\[P = \text{ESC} + \text{ETR} +/- \Delta S + \text{REC} \]

\(P \) = precipitación
\(\text{ESC} \) = escorrentía
\(\text{ETR} \) = evapotranspiración
\(\Delta S \) = cambios en el contenido de humedad del suelo
\(\text{REC} \) = recarga o infiltración potencial

Calcular la infiltración, consiste en calcular la infiltración a partir de la diferencia de los factores hidrológicos del balance: precipitación, evapotranspiración y escorrentía, aplicando la siguiente fórmula:

\[I = P - \text{ETR} - R \]
Dónde:

\[P = \text{precipitación media por el método de las isoyetas.} \]

\[ETR = \text{evapotranspiración real.} \]

\[R = \text{escorrentia calculada por el método de numero de curva.} \]

Tabla 9. Calculo de Infiltración, basado en los valores de escorrentía (R) y precipitación (P).

<table>
<thead>
<tr>
<th>AÑO</th>
<th>P</th>
<th>R</th>
<th>I</th>
<th>ETP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>74,70833333</td>
<td>26,1759055</td>
<td>48,53242783</td>
<td>4,86694</td>
</tr>
<tr>
<td>1983</td>
<td>190,25</td>
<td>122,144143</td>
<td>68,1058575</td>
<td>4,86694</td>
</tr>
<tr>
<td>1984</td>
<td>167,9916667</td>
<td>102,118409</td>
<td>65,8732576</td>
<td>4,86694</td>
</tr>
<tr>
<td>1985</td>
<td>128,0333333</td>
<td>67,4893299</td>
<td>60,54400337</td>
<td>4,86694</td>
</tr>
<tr>
<td>1986</td>
<td>208,8833333</td>
<td>139,191981</td>
<td>69,6913528</td>
<td>4,86694</td>
</tr>
<tr>
<td>1987</td>
<td>187,8166667</td>
<td>119,935411</td>
<td>67,8812553</td>
<td>4,86694</td>
</tr>
<tr>
<td>1988</td>
<td>171,7666667</td>
<td>105,484655</td>
<td>66,2820118</td>
<td>4,86694</td>
</tr>
<tr>
<td>1989</td>
<td>172,925</td>
<td>106,520213</td>
<td>66,4047868</td>
<td>4,86694</td>
</tr>
<tr>
<td>1990</td>
<td>185,1666667</td>
<td>117,53507</td>
<td>67,6315969</td>
<td>4,86694</td>
</tr>
<tr>
<td>1991</td>
<td>186,2416667</td>
<td>118,508147</td>
<td>67,7335194</td>
<td>4,86694</td>
</tr>
<tr>
<td>1992</td>
<td>120,1083333</td>
<td>60,9012092</td>
<td>59,20712407</td>
<td>5,182544</td>
</tr>
<tr>
<td>1993</td>
<td>193,5583333</td>
<td>125,154005</td>
<td>68,4043283</td>
<td>5,182544</td>
</tr>
<tr>
<td>1994</td>
<td>184,15</td>
<td>116,615618</td>
<td>67,5343817</td>
<td>5,182544</td>
</tr>
<tr>
<td>1995</td>
<td>197,6416667</td>
<td>128,879489</td>
<td>68,7621775</td>
<td>5,182544</td>
</tr>
<tr>
<td>1996</td>
<td>200,7916667</td>
<td>131,76107</td>
<td>69,0305963</td>
<td>5,182544</td>
</tr>
<tr>
<td>1997</td>
<td>172,8916667</td>
<td>106,490396</td>
<td>66,4012707</td>
<td>5,182544</td>
</tr>
<tr>
<td>1998</td>
<td>237,875</td>
<td>166,110261</td>
<td>71,7647395</td>
<td>5,182544</td>
</tr>
<tr>
<td>1999</td>
<td>175,4166667</td>
<td>108,751864</td>
<td>66,6648028</td>
<td>5,182544</td>
</tr>
</tbody>
</table>

Fuente: Resultado del estudio
ELABORACIÓN DE ESTUDIO DE RIESGO (AMENAZA Y VULNERABILIDAD) Y DISEÑO DE OBRAS DE ESTABILIZACIÓN EN LA VEREDA SERRANIAS, MUNICIPIO DE MACANAL JURISDICCIÓN DE LA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR (CORPOCHIVOR).
MINISTERIO DE AMBIENTE Y DESARROLLO SOSTENIBLE
FONDO DE COMPENSACIÓN AMBIENTAL FCA
CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR –CORPOCHIVOR

EJECUTOR
CONVENIO No. 038/2012.

Tabla 11. Estimación del Balance Hídrico

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PRECIPITACION PROMEDIO</td>
<td>74,70833333</td>
<td>190,25</td>
<td>167,9196667</td>
<td>128,0333333</td>
<td>208,8333333</td>
<td>187,8166667</td>
<td>171,7666667</td>
<td>172,925</td>
<td>185,1666667</td>
<td>186,2416667</td>
<td>120,1083333</td>
<td>193,5583333</td>
</tr>
<tr>
<td>ESCORRENIA</td>
<td>26,1759055</td>
<td>122,1441425</td>
<td>102,1184091</td>
<td>67,48932993</td>
<td>139,1919805</td>
<td>119,9354114</td>
<td>105,4846549</td>
<td>106,5202132</td>
<td>117,5350698</td>
<td>118,5081473</td>
<td>60,90120923</td>
<td>125,154005</td>
</tr>
<tr>
<td>EVAPOTRANSPIRACION</td>
<td>4,86694</td>
</tr>
<tr>
<td>DELTA</td>
<td>43,66548783</td>
<td>63,2389175</td>
<td>61,0063176</td>
<td>55,67706337</td>
<td>64,8244128</td>
<td>63,0143153</td>
<td>61,4150718</td>
<td>61,5378468</td>
<td>62,7646569</td>
<td>62,5509754</td>
<td>54,0245801</td>
<td>63,2217843</td>
</tr>
<tr>
<td>ALMACENAMIENTO</td>
<td>43,6654878</td>
<td>63,2389175</td>
<td>61,0063176</td>
<td>55,6770633</td>
<td>64,8244128</td>
<td>63,0143153</td>
<td>61,4150718</td>
<td>61,5378468</td>
<td>62,7646569</td>
<td>62,5509754</td>
<td>54,0245801</td>
<td>63,2217843</td>
</tr>
<tr>
<td>DEFICIT</td>
<td>43,6654878</td>
<td>63,2389175</td>
<td>61,0063176</td>
<td>55,6770633</td>
<td>64,8244128</td>
<td>63,0143153</td>
<td>61,4150718</td>
<td>61,5378468</td>
<td>62,7646569</td>
<td>62,5509754</td>
<td>54,0245801</td>
<td>63,2217843</td>
</tr>
</tbody>
</table>

Fuente: Resultado del estudio

ELABORACIÓN DE ESTUDIO DE RIESGO (AMENAZA Y VULNERABILIDAD) Y DISEÑO DE OBRAS DE ESTABILIZACION EN LA VEREDA SERRANIAS, MUNICIPIO DE MACANAL JURISDICCIÓN DE LA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR (CORPOCHIVOR).
Figura 10. Comportamiento de las Curvas del Balance Hídrico.

Fuente: Resultado del estudio.
2.5. CALCULO DE CAUDAL DE DISEÑO A PARTIR DE LAS CURVAS IDF

2.5.1. Resultados

Ajuste de una serie de datos a la distribución Gumbel

Serie de datos X:

<table>
<thead>
<tr>
<th>N°</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>318,0</td>
</tr>
<tr>
<td>2</td>
<td>436,0</td>
</tr>
<tr>
<td>3</td>
<td>376,0</td>
</tr>
<tr>
<td>4</td>
<td>537,0</td>
</tr>
<tr>
<td>5</td>
<td>416,0</td>
</tr>
<tr>
<td>6</td>
<td>459,0</td>
</tr>
<tr>
<td>7</td>
<td>352,0</td>
</tr>
<tr>
<td>8</td>
<td>484,0</td>
</tr>
<tr>
<td>9</td>
<td>350,0</td>
</tr>
<tr>
<td>10</td>
<td>323,0</td>
</tr>
</tbody>
</table>

Cálculos del ajuste Smirnov Kolmogorov:

<table>
<thead>
<tr>
<th>m</th>
<th>X</th>
<th>P(X)</th>
<th>G(Y) Ordinario</th>
<th>G(Y) Mom Lineal</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>318,0</td>
<td>0,0909</td>
<td>0,0768</td>
<td>0,1071</td>
<td>0,0141</td>
</tr>
<tr>
<td>2</td>
<td>323,0</td>
<td>0,1818</td>
<td>0,0952</td>
<td>0,1270</td>
<td>0,0866</td>
</tr>
<tr>
<td>3</td>
<td>350,0</td>
<td>0,2727</td>
<td>0,2303</td>
<td>0,2606</td>
<td>0,0424</td>
</tr>
<tr>
<td>4</td>
<td>352,0</td>
<td>0,3636</td>
<td>0,2422</td>
<td>0,2717</td>
<td>0,1214</td>
</tr>
<tr>
<td>5</td>
<td>376,0</td>
<td>0,4545</td>
<td>0,3934</td>
<td>0,4104</td>
<td>0,0611</td>
</tr>
<tr>
<td>6</td>
<td>416,0</td>
<td>0,5455</td>
<td>0,6286</td>
<td>0,6235</td>
<td>0,0632</td>
</tr>
<tr>
<td>7</td>
<td>436,0</td>
<td>0,6364</td>
<td>0,7207</td>
<td>0,7089</td>
<td>0,0844</td>
</tr>
<tr>
<td>8</td>
<td>459,0</td>
<td>0,7273</td>
<td>0,8031</td>
<td>0,7875</td>
<td>0,0759</td>
</tr>
<tr>
<td>9</td>
<td>484,0</td>
<td>0,8182</td>
<td>0,8679</td>
<td>0,8515</td>
<td>0,0497</td>
</tr>
<tr>
<td>10</td>
<td>537,0</td>
<td>0,9091</td>
<td>0,9453</td>
<td>0,9330</td>
<td>0,0362</td>
</tr>
</tbody>
</table>

ELABORACIÓN DE ESTUDIO DE RIESGO (AMENAZA Y VULNERABILIDAD) Y DISEÑO DE OBRAS DE ESTABILIZACIÓN EN LA VEREDA SERRANIAS, MUNICIPIO DE MACANAL JURISDICCIÓN DE LA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR (CORPOCHIVOR).
Ajuste con momentos ordinarios:

Como el delta teórico 0,1214, es menor que el delta tabular 0,4301. Los datos se ajustan a la distribución Gumbel, con un nivel de significación del 5%

Parámetros de la distribución Gumbel:

Con momentos ordinarios:
Parámetro de posición (µ)= 372,0175
Parámetro de escala (alfa)= 57,314

Con momentos lineales:
Parámetro de posición (µl)= 368,6905
Parámetro de escala (alfal)= 63,0778

Caudal de diseño:

El caudal de diseño para un periodo de retorno de 2 años, es 393,02
El caudal de diseño para un periodo de retorno de 5 años, es 457,99
El caudal de diseño para un periodo de retorno de 10 años, es 500,99
El caudal de diseño para un periodo de retorno de 25 años, es 555,34
El caudal de diseño para un periodo de retorno de 50 años, es 595,65
El caudal de diseño para un periodo de retorno de 75 años, es 619,09
El caudal de diseño para un periodo de retorno de 100 años, es 635,67
El caudal de diseño para un periodo de retorno de 500 años, es 728,14

2.6. MORFOMETRÍA DE LA CUENCA

Los parámetros morfométricos de una cuenca permiten establecer las características geométricas de la misma, la cual determina en alto grado la susceptibilidad que ésta tiene para presentar, en sucesos eventuales o con el transcurso del tiempo, inundaciones y Avenidas Torrenciales; por ejemplo: una microcuenca alargada muestra una amenaza baja por avenidas torrenciales,
porque permite disipar con facilidad una precipitación abundante de corta duración, lo inverso sucede con una microcuenca redonda. Para objeto de este estudio, se analizarán únicamente las Avenidas Torrenciales, ya que por las características topográficas de la región, es poco posible que se presenten inundaciones propiamente dichas. Los parámetros morfométricos determinados para todas las cuencas de la jurisdicción se enuncian a continuación:

Área de la Cuenca (A)
Perímetro de la cuenca (P)
Coeficiente de compacidad (C).
Coeficiente de redondez (K).
Densidad de drenaje (Dd)
Pendiente media de la corriente (IC)

• **Área de la Cuenca (A)** El área de la cuenca se obtiene de acuerdo al promedio de las mediciones realizadas con el Planímetro, AutoCad, o cualquier otro método para su medición, está limitada por divisorias de aguas, hasta la desembocadura del río o quebrada y está dada en Km2.

• **Perímetro de la cuenca (P)** Longitud medida del contorno de la cuenca, es decir por las divisorias de aguas que la limitan, y está dada en Km.

• **Coeficiente de compacidad (C)** Esta variable compara el perímetro de la cuenca con la longitud o perímetro asociado.
C = \frac{P}{2\sqrt{\frac{A}{\pi}}}

C = 1: Cuenca de forma compacta redonda.
C = 1.20: Cuenca semicompecta semioxal redonda
C = 1.50: Cuenca semicompecta oblonga
C > 1: Cuenca semicompecta rectángulo – oblonga

• **coeficiente de redondez (K)** Relaciona la longitud de la cuenca, con el área de la misma.

\[
K = \frac{Lb^2}{4A}
\]

K = 1: Redonda
K > 1: Semiredonda
K < 1: Irregular

• **densidad de drenaje (Dd)** Es la medición de la longitud acumulada de todas las corrientes (Ld) y el área (A).

\[
Dd = \frac{Ld}{A}
\]

Dd < 0.5 : Baja
Dd = 0.5 : Media
Dd > 1 : Alta

• **tiempo de concentración (TC)** Es el tiempo que gasta una gota de agua en recorrer el sitio más lejano de la cuenca a la desembocadura del cauce principal.

\[
Tc = 0.0663 \left(\frac{Lb}{\sqrt{A}} \right)^{0.07}
\]
Con base al análisis anterior sus parámetros morfométricos indican las cuencas analizadas presentan de media a alta susceptibilidad a la torrencialidad.

A continuación resumimos en la Tabla 12 el resultado de los cálculos morfométricos de la cuenca regional de Macanal analizadas para el presente estudio.

Figura 11. Imagen ilustrativa de la cuenca regional de Macanal

Fuente: Resultado del estudio.
Tabla 12. Valores de parámetros morfométricos para la cuenca regional

<table>
<thead>
<tr>
<th>NOMBRE MICROCUENCA</th>
<th>Área de la Cuenca en Km (A)</th>
<th>Perímetro de la cuenca Km (P)</th>
<th>longitud de la cuenca Km (Lb)</th>
<th>el ancho mayor Km (l)</th>
<th>longitud acumulada de todas las corrientes Km (Ld)</th>
<th>longitud acumulada de todas las corrientes Km (Ld)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rio Bata</td>
<td>3.10</td>
<td>8.54</td>
<td>2.57</td>
<td>1.31</td>
<td>6.74</td>
<td>750</td>
</tr>
<tr>
<td>Cota Mínima de la Cuenca (Hm)</td>
<td>Diferencia de Altura Km (Hc)</td>
<td>Razón de Relieve (Rr)</td>
<td>Número de Corrientes(Nc)</td>
<td>Frecuencia de Corrientes (Caucés/Km2)</td>
<td>Pendiente media de Corriente lc % (lc)</td>
<td>Índice de Alargamiento (la)</td>
</tr>
<tr>
<td>150</td>
<td>0.60</td>
<td>0.23</td>
<td>2.00</td>
<td>0.65</td>
<td>23.36</td>
<td>1.96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COEFICIENTE DE COMPACIDAD (C). FORMA Y SUSCEPTIBILIDAD</th>
<th>COEFICIENTE DE REDONDEZ (K). FORMA Y SUSCEPTIBILIDAD</th>
<th>DENSIDAD DE DRENAJE (Dd)</th>
<th>TIEMPO DE CONCENTRACIÓN en horas (TC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.53 REDONDA</td>
<td>0.53 Iregular</td>
<td>2.18 Densidad Media</td>
<td>0.07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.21 Normal a lento.</td>
<td>0.77 SEMIREDONDA</td>
<td>0.92 CUADRADA</td>
<td>4</td>
</tr>
</tbody>
</table>

Fuente: Resultado del estudio

De la anterior tabla se concluye que por sus morfometría la cuenca regional presenta susceptibilidad alta a la torrencialidad.
2.7. USO ACTUAL Y COBERTURA DEL SUELO

Fotografía 2. Ubicación geográfica

Ecosistemas terrestres son aquellos que se dan sobre la capa de tierra superficial de la Biosfera. Los ecosistemas terrestres ocupan, proporcionalmente, menos superficie que los ecosistemas acuáticos. Mientras que a estos últimos les corresponde aproximadamente un 75 %, los ecosistemas terrestres dominan el 25 % restante.

El grupo más numeroso de individuos de los ecosistemas terrestres son los insectos representado por unas 900.000 especies. Dentro de los animales el segundo grupo más significativo serían las aves, con aproximadamente 8500 especies y en tercer lugar los mamíferos con unas 4100 especies. Dentro del mundo de las plantas, existen numerosos tipos, las angiospermas son las más abundantes, con unas 224000 especies frente a las 24000 especies de briofitos.

Los ecosistemas terrestres presentan una variedad mayor que el resto de ecosistemas dado que son muchos los factores que limitan las especies que en ellos habitan. Todos estos factores han producido una gran variedad de ecozonas
o regiones biogeográficas en donde los elementos animados e inanimados presentan sus características peculiares.

El uso del suelo y el cambio en la cobertura vegetal asociados al fraccionamiento de la biosfera es uno de los más severos efectos de las acciones directas e indirectas del hombre sobre la tierra, lo cual ha generado un incremento de las tasas de extinción de especies en las décadas recientes.

Todas las estimaciones de la superficie afectada por estos fenómenos, son indicadores de un severo problema que se está marcando y que tiene que ver directamente con el cambio en la cobertura vegetal hacia otro uso del suelo y el deterioro ambiental.

Investigaciones aplicadas a los cambios en la cobertura vegetal están teniendo un mayor grado atención debido esencialmente a las implicaciones de la deforestación. A nivel regional, dicho mecanismo ocasiona la disminución e incluso la pérdida de la cobertura vegetal, el deterioro de los recursos forestales, el deterioro físico y químico del suelo, alteración del balance hídrico y la desestabilización de cuencas.

2.7.1. VEGETACIÓN
Se presenta una descripción del sistema basado en las zonas de visa desarrollado desde 1947 por L.R. Holdridge. La descripción tiene un carácter anatómico; es decir, se describe la estructura, las partes del sistema y sus conexiones, sin detenerse en aspectos fisiológicos ni las bases filosóficas que se describen en el final de este capítulo en una caracterización vegetal general. Se describe la
estructura de las zonas de vida (primer nivel del sistema), refiriéndose pa ello a los elementos del diagrama respectivo. Se describen también asociaciones, que constituyen asociaciones del segundo nivel del sistema, y se mencionan el uso de la tierra, trabajado con la nomenclatura Corine Land Cover.

Para la descripción regional el sistema de clasificación basado en zonas de vida contempla regiones latitudinales y, dentro de cada región, se contemplan fajas o pisos altitudinales como se observan a continuación:

Figura 12. Posiciones aproximadas de las Líneas guía de las regiones latitudinales y las fajas altitudinales del sistema mundial de zonas de vida de Holdridge, (basado en una tasa de cambio de .6°C por cada 1000m).

La vegetación es de clima frío muy húmedo, es de porte muy bajo y se encuentra intervenida en gran medida. En algunas zonas se conservan, especialmente los
frailejones y pajonales que son especies dominantes. Según la clasificación de L.R. Holdridge en el municipio existen las siguientes unidades bioclimáticas:

BOSQUE RASTROJO ALTO ANDINO
La vegetación de esta región se caracteriza por presentar una mediana intervención antrópica que ha sido acentuada sobre sus especies constitutivas y por lo tanto del bosque en general. Se presenta en la formación vegetal de bosque húmedo montano bajo (bh-MB) en parches aislados y a veces continuos con topografía ondulada.

BOSQUE NATIVO
En estos bosques predominan el encenillo (*Weinmania tormentosa*), granizo (*Hedyosmum sp*), el gaque (*Clusia sp*), sietecueros (*Tilouchinas*), el chusque (*Chusquea scandes*) y mora (*Rubus sp*). En la parte baja (1200-2200 m.s.n.m.) se encuentran reductores de bosques de lo que fueran bosques nativos de clima medio. Entre estos se tiene: cedro (*cedrella montana*), ceibo (*ceiba pentandra*), higuerón (*ficus sp*).

En toda el área se encuentran dispersas plantaciones pertenecientes a familias de Myrtaceae y cupresáceae en desarrollo producto de las campañas de reforestación emprendidas por Isa y el municipio Ramiriquí en años anteriores. Los principales cultivos observados son: maíz con una presencia de un Caducifolios 30% con un 10%, frijol 30%, tomate un 5%, papa 5%, arveja 5% y otros cultivos misceláneos con un 25% (arracacha, alverja, maiz, habichuela, pepino, pimentón, etc.).
BOSQUE SECUNDARIO Y RASTROJO
Esta unidad de vegetación, se caracteriza porque presenta un alto grado de intervención, y por tanto se encuentra en distintas partes del Municipio, generalmente ubicado en riberas de quebradas y bordeando áreas que antes fueron de vegetación nativa. Representa un estado de sucesión posterior a la dominancia arbórea regular del Bosque Primario y por tanto, aún contiene en algunos parches, especies que antes fueron dominantes en otras formaciones vegetales, hoy como individuos aislados y testigos de la gradual invasión de la frontera agrícola y pecuaria.

2.7.2. COBERTURA Y USO DE SUELO PARA EL ÁREA DE INFLUENCIA DEL ESTUDIO.
Dentro del programa CORINE (Coordination of information on the environment) promovido por la Comisión de la Comunidad Europea fue desarrollado el proyecto de cobertura de la tierra “CORINE Land Cover” 1990 (CLC90), el cual definió una metodología específica para realizar el inventario de la cobertura de la tierra. Actualmente, su base de datos constituye un soporte para la toma de decisiones en políticas relacionadas con el medio ambiente y el ordenamiento territorial, aceptada por la Unión Europea. Hoy en día se aplica sobre la totalidad del territorio europeo a través del proyecto CLC2000.

La base de datos de CORINE Land Cover Colombia (CLC) permite describir, caracterizar, clasificar y comparar las características de la cobertura de la tierra, interpretadas a partir de la utilización de imágenes de satélite de resolución media (Landsat), para la construcción de mapas de cobertura a escala 1:100.000. En Colombia existen actualmente múltiples metodologías y sistemas de clasificación para levantar información de las coberturas de la tierra.
El proyecto “CORINE Land Cover Colombia” se propuso estandarizar un sistema de clasificación, con categorías jerárquicas definidas de acuerdo con la información que pueden proporcionar las imágenes de satélite Landsat TM, conforme con las condiciones locales del territorio nacional. La adaptación y validación de la metodología CLC permitirá comparar estadísticas de ocupación de la tierra, crear líneas de comunicación entre las diferentes instituciones que adopten el sistema, y, además, facilitar la homologación de información.

La metodología empleada para el levantamiento de las coberturas de vegetales dentro de la zona fue la Corine Land Cover adaptada, desarrollada y abalada para Colombia por instituciones del orden nacional y regional como IDEAM, IGAC, CORMAGDALENA, SINCHI y UAESPNN, Esta metodología tiene como propósito la realización del inventario homogéneo de la cubierta biofísica (cobertura) de la superficie de la tierra a partir de la interpretación visual de imágenes de satélite asistida por computador y la generación de una base de datos geográfica, junto con los siguientes procedimientos generales,

- Procesamiento digital de imágenes satelitales.
- Definición de la leyenda.
- Distribución de la zona de estudio a los intérpretes.
- Interpretación visual sobre pantalla.
- Controles de calidad: temática y topológica.
- Trabajo de campo: caracterización vegetal y verificación de coberturas.
- Ajustes a la cobertura digital definitiva.
- Estructuración de la información.

ELABORACIÓN DE ESTUDIO DE RIESGO (AMENAZA Y VULNERABILIDAD) Y DISEÑO DE OBRAS DE ESTABILIZACIÓN EN LA VEREDA SERRANIAS, MUNICIPIO DE MACANAL JURISDICCIÓN DE LA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR (CORPOCHIVOR).
Los productos del proyecto, representados en el mapa de las coberturas vegetales y usos de suelos de la zona de estudio, en la metodología y en leyenda adaptadas al territorio colombiano y en este caso para la jurisdicción de CorPOCHIVOR, proveerán las características temáticas y cartográficas que la región requiere para el conocimiento, la evaluación de las formas de uso, ocupación y apropiación del espacio geográfico, así como para satisfacer las necesidades de información de sectores científicos, económicos, académicos y ambientales, entre otros, esperando que se conviertan en insumos básicos para los tomadores de decisiones en el país.

La metodología CORINE Land Cover, adaptada a las condiciones del territorio colombiano, se convierte en una herramienta para avanzar en el conocimiento de las coberturas de la tierra en otras cuencas y para la actualización permanente de la información, con lo cual se espera que se faciliten los procesos de seguimiento y evaluación de la dinámica de los cambios de las coberturas terrestres.

Finalmente, se espera que este producto, sea usado como una herramienta de apoyo para la gestión sostenible de los recursos naturales y para construir las bases para el ordenamiento ambiental y territorial del país, y unificación de las metodologías de coberturas de la tierra que se aplican actualmente en Colombia.

2.7.3. ESTUDIO DE LA FLORA
La flora es el conjunto de especies vegetales que pueblan un territorio o una región geográfica, consideradas desde el punto de vista sistemático. La flora será rica o pobre según que la región geográfica considerada posea muchas especies vegetales o escaso número de ellas. El conjunto de flora es de muy variable
amplitud, según el punto de vista desde el que se considere. Para las áreas de estudio indirecto (AEI) se analizarán los siguientes aspectos:

- Identificar, sectorizar y describir las zonas de vida o formaciones vegetales.
- Identificación, sectorización y descripción de los diferentes tipos de cobertura vegetal existente.
- Identificación de especies endémicas, amenazadas o en peligro de extinción.

Presentar un plano de cobertura vegetal y uso del suelo a partir de sensores remotos y control de campo, en caso de requerirse. Las unidades cartografiadas se deben describir, teniendo en cuenta su localización, distribución e importancia ecológica y social. El análisis para el área de estudio directo (AED) se estudiara entre otras las siguientes variables:

- Descripción florística: Con identificación de endemismos, importancia económica y cultural.
- Diversidad florística
- Índices de calificación e importancia ecológica.
- Importancia económica y cultural de algunas especies.
- Identificación de áreas que por sus características ecológicas deben conservarse en su estado actual, determinando espacialmente las áreas de restricción y conservación.

Para el proyecto se deberá realizar un muestreo detallado de la vegetación en cada una de las formaciones vegetales identificadas, con el objetivo de determinar biodiversidad, cobertura y abundancia. Se indicarán las especies con valor ecológico, cultural y comercial. Aplica para áreas de influencia directa. Se realizó un análisis de:
- Localización de las diferentes unidades de cobertura vegetal y uso actual del suelo, que incluya su identificación respecto a actividades pecuarias, agrícolas, agropecuarias, forestales, agrosistemas, eriales, zonas protectoranzs, etc.
- Descripción fisionómica de las diferentes coberturas vegetales, perfil y estructura de estratos (arbóreo; arbustivo: herbáceo; epígeo; entre otros).
- Identificación de los usos y/o destinos específicos dados por las comunidades, incluyendo los usos culturales.

2.7.4. IDENTIFICACIÓN Y DESCRIPCIÓN DE COBERTURAS
Mediante el sistema de clasificación de coberturas de tierra metodología Corin Land Cover adaptada para Colombia que establece una leyenda nacional de manera jerárquica, derivando las unidades de coberturas de la tierra con base en criterios fisionómicos de altura y densidad, claramente definidos y aplicables a todas las unidades consideradas para un grupo de coberturas del mismo tipo.

De esta manera, se garantiza que sea posible la inclusión de nuevas unidades o la definición de nuevos niveles de unidades para estudios más detallados, permitiendo su ubicación y definición rápidamente. Se establecieron las siguientes zonas en el área de estudio:

TEJIDOS ARTIFICIALES
Comprende las áreas de las ciudades y las poblaciones y, aquellas áreas periféricas que están siendo incorporadas a las zonas urbanas mediante un procesa gradual de urbanización o de cambio del uso del suelo hacia fines comerciales, industriales, de servicios y recreativas del área rural del estudio.
ZONAS URBANIZADAS
Las zonas urbanizadas incluyen los territorios cubiertos por infraestructura urbana y todos aquellos espacios verdes y redes de comunicación asociados con ellas, que configuran un tejido urbano. La zona de estudio presenta las siguientes unidades:

ZONAS INDUSTRIALES O COMERCIALES Y REDES DE COMUNICACIÓN
Comprende los territorios cubiertos por infraestructura de uso exclusivamente comercial, industrial, de servicios y comunicaciones. Se incluyen tanto las instalaciones como las redes de comunicaciones que permiten el desarrollo de los procesos específicos de cada actividad.

RED VIAL, FERROVIARIA Y TERRENOS ASOCIADOS
Es un espacio artificializado con infraestructuras de comunicaciones como carreteras que comunica el municipio de Chinavita con los municipio de Umbita y Tibanal; se incluye la infraestructura conexa y las instalaciones asociadas tales como: estaciones de servicios, andenes, terraplenes y áreas verdes.
Fotografía 3. Tejido artificializado de nivel 4 red vial.

Fuente: Registro Fotográfico

TERRITORIOS AGRÍCOLAS
Son los terrenos dedicados principalmente a la producción de alimentos, fibras y otras materias primas industriales, ya sea que se encuentren con cultivos, con pastas, en rotación y en descanso o barbecho. Comprende las áreas dedicadas a cultivos permanentes, transitorios, áreas de pastos y las zonas agrícolas heterogéneas.

PASTOS
En la zona de influencia de la falla es dominancia de zona agrícola del orden de pastos Comprende las tierras cubiertas con hierba densa de composición florística dominada principalmente por la familia Poaceae, dedicadas a pastoreo permanente por un periodo de dos o más años.

Algunas de las categorías definidas pueden presentar anegamientos temporales o permanentes cuando están ubicadas en zonas bajas o en depresiones del terreno. Una característica de esta cobertura es que en un alto porcentaje su presencia se debe a la acción antrópica, referida especialmente a su plantación, con la
introducción de especies no nativas principalmente, y en el manejo posterior que se le hace.

PASTOS ENMALEZADOS O ENRASTROJADOS
Son las coberturas representadas por tierras con pastos y malezas conformando asociaciones de rastrojos, debido principalmente a la realización de escasas prácticas de manejo o la ocurrencia de procesos de abandono. En general, la altura del rastrojo es menor a 1,5 metros.

Fotografía 4. Pastos enmalezados o enrastrados

Fuente: Registro Fotográfico

PASTOS LIMPIOS
Esta cobertura comprende las tierras ocupadas por pastos limpios con un porcentaje de cubrimiento alto, la realización de prácticas de manejo (Limpieza, encalamiento y/o fertilización, etc.) y el nivel tecnológico utilizados impiden la presencia o el desarrollo de otras coberturas, dominancia principalmente en la zona media de la zona de estudio.
El deslizamiento descendió por esta cobertura, facilitándole su avance y velocidad debido a la ausencia de cobertura vegetales mayores como bosques bajos. esta exposición del suelo a los agentes erosivos es debido a la disminución de la cubierta vegetal por el pastoreo y a la remoción del suelo por el pisoteo. Estos factores favorecen a la erosión hídrica y a la erosión Eólica. Sumados a la Inclinación Facilitaron El Deslizamiento. El sobrepastoreo facilita la desertificación de áreas semiáridas y la desprotección de las escorrentías. Esto último influye también en el balance de las aguas superficiales y subterráneas.

Fotografía 5. pastos limpios presente en la zona de estudio

Fuente: Registro Fotográfico

En la zona de estudio existe sobrepastoreo debido a las siguientes características observadas:

- Presencia de vegetación herbácea muy baja, como si se hubiera "cortado el pasto" en un jardín. Esto se puede ver si el lugar tiene cierta humedad que permita su recuperación.
Presencia de "pie de vaca", que se visualiza a la distancia como líneas paralelas aproximadamente horizontales que se ven en las zonas serranas, a modo de "arrugas" en la montaña y que son caminos de recorrido y pastoreo del ganado.

- Vegetación herbácea muy rala, en algunos casos inexistente, con tierra suelta y removida, hasta incluso con abundancia de huellas de animales.
- Preponderancia de especies leñosas espinosas bajas, con muy pocas hierbas, característica del fachinal.
- Composición florística herbácea conformada fundamentalmente por hierbas poco palatables o no palatables para el ganado, debido a que las apetecidas por los animales fueron comidas por el constante pastoreo.

BOSQUES

Comprende las áreas naturales o seminaturales, constituidas principalmente por elementos arbóreos de especies nativas o exóticas. Los árboles son plantas leñosas perennes con un solo tronco principal, que tiene una copa más o menos definida.

Para efectos de clasificación los bosques son determinados por la presencia de árboles que deben alcanzar una altura del dosel superior a los cinco metros.

Para efectos de la caracterización de la densidad se definió como el porcentaje de cobertura de la copa. Por su parte, la cobertura de la copa, en este documento, corresponde al porcentaje del suelo o del terreno ocupado por la proyección perpendicular de la vegetación en su conjunto, o por uno de sus estratos o especies. Una cobertura densa corresponde a una cobertura arbórea mayor a 70% de la unidad, en la cual las copas se tocan. Una cobertura se considera...
abierta cuando la cobertura arbórea representa entre 30% y 70% del área total de la unidad, en la cual la mayoría de las copas no se tocan entre ellas.

La altura es definida por la altura total del dosel, sin incluir emergentes. Para efectos de este estudio, se adaptó la clasificación propuesta por Cain y Castro (1959), quienes definen como bajos los estratos de árboles con altura menor a ocho metros; intermedios a los estratos de árboles con alturas comprendidas entre 8 y 15 metros; y como estratos de árboles altos los que tienen altura superior a 15 metros. De esta manera, para esta leyenda, se unieron los estratos bajo e intermedio en uno solo denominado como bajo. Para la interpretación de las coberturas de la tierra, los bosques se clasifican, entonces, a partir de la densidad de la cobertura arbórea, en densos y abiertos; de acuerdo con la altura del dosel, los bosques se clasifican en altos y bajos; y de acuerdo con la condición de inundabilidad del terreno donde se ubican los bosques, se clasifican en inundables y de tierra firme. De esta manera, se obtiene la clasificación que se explica a continuación:

Figura 13. Criterios para la clasificación de los bosques

Fuente: Corine Land Cover 2010
BOSQUE DENSO
Cobertura constituida por una comunidad vegetal dominada por elementos típicamente arbóreos, los cuales forman un estrato de copas (dosel) más o menos continuo, y con altura del dosel superior a cinco metros. Estas formaciones vegetales no han sido intervenidas o su intervención ha sido selectiva y no ha alterado su estructura original y las características funcionales Se exceptúan de esta unidad los bosques fragmentados.

BOSQUE DENSO BAJO
Cobertura constituida por una comunidad vegetal dominada por elementos típicamente arbóreos, los cuales forman un estrato de copas (dosel) más o menos continuo, con altura del dosel superior a cinco metros, pero inferior a 15 metros.

BOSQUE DENSO BAJO DE TIERRA FIRME
Corresponde a las áreas con vegetación de tipo arbóreo caracterizada por un estrato más o menos continuo con altura del dosel entre 5 y 15 metros y que se encuentra localizada en zonas que no presentan procesos de inundación periódicos.

Fotografía 6. Bosque denso bajo

Fuente: Registro Fotográfico
BOSQUE ABIERTO ALTO
Cobertura constituida por una comunidad vegetal dominada por elementos típicamente arbóreos regularmente distribuidos, los cuales forman un estrato de copas (dosel) discontinuo, con altura del dosel superior a 15 metros, y cuya área de cobertura arbórea representa entre el 30% y el 70% del área total de la unidad. Estas formaciones vegetales no han sido intervenidas o su intervención ha sido selectiva y no ha alterado su estructura original y las características funcionales.

Fotografía 7. Bosque abierto alto

Fuente: Registro Fotográfico

BOSQUE DE GALERÍA Y RIPARIO
Se refiere a las coberturas constituidas por vegetación arbórea ubicada en las márgenes de cursos de agua permanentes o temporales. Este tipo de cobertura está limitada por su amplitud, ya que bordea los cursos de agua y los drenajes naturales. Cuando la presencia de estas franjas de bosques ocurre en regiones de sabanas se conoce como bosque de galería o canadas, las otras franjas de bosque en cursos de agua de zonas andinas son conocidas como bosque ripario.
ÁREAS CON VEGETACIÓN HERBÁCEA Y/O ARBUSTIVA
Comprende un grupo de coberturas vegetales de tipo natural y producto de la sucesión natural, cuyo hábito de crecimiento es arbustivo y herbáceo, desarrolladas sobre diferentes sustratos y pisos altitudinales, con poca o ninguna intervención antrópica.

Para la leyenda de CORINE Land Cover adaptada para Colombia, en esta clase se incluyen otros tipos de cobertura tales como las áreas cubiertas por vegetación principalmente arbustiva con dosel irregular y presencia de arbustos, enredaderas y vegetación de bajo porte. Las coberturas definidas son las siguientes:

HERBAZAL
Cobertura constituida por una comunidad vegetal dominada por elementos típicamente herbáceos desarrollados en forma natural en diferentes densidades y sustratos, los cuales forman una cobertura densa (>70% de ocupación) o abierta (30% - 70% de ocupación). Estas formaciones vegetales no han sido intervenidas o su intervención ha sido selectiva y no ha alterado su estructura original y las características funcionales (Oram, 1998).
AGUAS CONTINENTALES
Son cuerpos de aguas permanentes, intermitentes y estacionales que comprenden lagos, lagunas, ciénagas, depósitos y estanques naturales o artificiales de agua dulce (no salina), embalses y cuerpos de agua en movimiento, como los ríos y canales.

RÍOS
Un río es una corriente natural de agua que fluye con continuidad, posee un caudal considerable y desemboca en el mar, en un lago o en otro río. Se considera como unidad mínima cartografiable aquellos ríos que presenten un ancho del cauce mayor o igual a 50 metros.
Foto 9. Rio

Fuente: Registro Fotográfico

Figura 14. Mapa cobertura vegetal y uso de suelo

Fuente: Resultado del estudio

ELABORACIÓN DE ESTUDIO DE RIESGO (AMENAZA Y VULNERABILIDAD) Y DISEÑO DE OBRAS DE ESTABILIZACIÓN EN LA VEREDA SERRANIAS, MUNICIPIO DE MACANAL JURISDICCIÓN DE LA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR (CORPOCHIVOR).
Figura 15. Áreas de coberturas.

<table>
<thead>
<tr>
<th>TIPO DE COBERTURA</th>
<th>AREA m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASTOS ENMALEZADOS O ENRASTROJADOS (PEE)</td>
<td>3717</td>
</tr>
<tr>
<td>BOSQUE RIPARIO (BRIP)</td>
<td>1027</td>
</tr>
<tr>
<td>BOSQUE ABIERTO ALTO (BAA)</td>
<td>1857</td>
</tr>
<tr>
<td>BOAQUE Denso BAJO (BDB)</td>
<td>14406</td>
</tr>
<tr>
<td>HERBAZAL (HBZ)</td>
<td>5770</td>
</tr>
<tr>
<td>PASTOS LIMPIOS (PL)</td>
<td>4120</td>
</tr>
<tr>
<td>RIO (RIO)</td>
<td>1211</td>
</tr>
<tr>
<td>RED VIAL (RV)</td>
<td>1060</td>
</tr>
<tr>
<td>ARBUSTAL (ARB)</td>
<td>830</td>
</tr>
</tbody>
</table>

Fuente: Resultado del estudio

Figura 16. PORCENTAJE DE COBERTURAS

Fuente: Resultado del estudio

ELABORACIÓN DE ESTUDIO DE RIESGO (AMENAZA Y VULNERABILIDAD) Y DISEÑO DE OBRAS DE ESTABILIZACIÓN EN LA VEREDA SERRANIAS, MUNICIPIO DE MACANAL JURISDICCIÓN DE LA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR (CORPOCHIVOR).
2.7.5. UNIDADES DE COBERTURA VEGETAL

Para la individualización, caracterización y observación de las diferentes unidades de cobertura vegetal se realizaron estudios de campo, en el cual se evaluaron la estructura y la composición florística de las diferentes unidades de cobertura vegetal, mediante la observación directa en campo y la recolección de material botánico, así como también se realizaron observaciones de topografía, drenaje y suelos.

En ecología se pueden hacer estudios de fauna de diferentes formas. Los estudios pueden ser de tipo descriptivo, comparativo, observacional y experimental. Los estudios descriptivos son generalmente exploratorios y no tienen una hipótesis a priori. El objetivo de estos estudios es obtener información acerca de un fenómeno o sistema del cual previamente se tenía ninguna o muy poca información. Los estudios comparativos se deben realizar en sistemas de los que se tiene cierta información y cuando se tiene una o varias hipótesis de antemano.

El objetivo de este tipo de estudio es obtener la información necesaria para someter a prueba las hipótesis. Los estudios observacionales se basan en información obtenida del sistema en su estado original; generalmente no se hace ninguna manipulación del sistema. Los estudios experimentales consisten en manipular o modificar, de manera particular, un determinado sistema o ambiente. La información que interesa es, precisamente, la respuesta del sistema al tratamiento.

Se presenta el componente vegetal de la zona de estudio y el siguiente inventario, teniendo en cuenta que muchas de las especies referenciadas, su frecuencia de
aparición es muy baja y dispersa. Para la elaboración del mapa de cobertura vegetal se generalizaron las especies para facilitar su manejo, No se cuenta con un detallado inventario de la biomasa.

Tabla 13. Unidades de cobertura vegetal

<table>
<thead>
<tr>
<th>FAMILIA</th>
<th>NOMBRE CIENTÍFICO</th>
<th>NOMBRE COMÚN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asteráceae</td>
<td>Baccharis latifolia (Ruiz & Pav.) Pers.</td>
<td>chilca</td>
</tr>
<tr>
<td>Asteráceae</td>
<td>Baccharis cundinamarcensis Cuatrec.</td>
<td>Chilca</td>
</tr>
<tr>
<td>Asteráceae</td>
<td>Ageratina boyacensis r.m. King & h. Rob.</td>
<td></td>
</tr>
<tr>
<td>Asteráceae</td>
<td>Baccharis bogotensis</td>
<td>Chilca</td>
</tr>
<tr>
<td>Asteráceae</td>
<td>Diplostephium rosmarinifolius (benth.) Wedd.</td>
<td>Romero de paramo</td>
</tr>
<tr>
<td>Asteráceae</td>
<td>Eupatorium arsenii</td>
<td></td>
</tr>
<tr>
<td>Asteráceae</td>
<td>Euphrosyne partheniifolia</td>
<td></td>
</tr>
<tr>
<td>Asteráceae</td>
<td>Bidens sp.</td>
<td>Bernada</td>
</tr>
<tr>
<td>Asteráceae</td>
<td>Chromolaena scabra (l. F.) R.m. King & h. Rob.</td>
<td></td>
</tr>
<tr>
<td>Asteráceae</td>
<td>Polymnia Pyramidalis triana</td>
<td></td>
</tr>
<tr>
<td>Asteráceae</td>
<td>Taraxacum officinale</td>
<td>Diente de león</td>
</tr>
<tr>
<td>Bromeliaceae</td>
<td>Racinaetha tetrantha (ruiz & pav) m.a. Spencer & l.b. Sm.</td>
<td>Bromelia, quinche</td>
</tr>
<tr>
<td>Cecropiáceae</td>
<td>Cecropia peltata</td>
<td>Arryan</td>
</tr>
<tr>
<td>Clusiaceae</td>
<td>Clusia multiflora kunth</td>
<td>Guaco</td>
</tr>
<tr>
<td>Cunoniáceae</td>
<td>Weinmannia tomentosa l. F.</td>
<td>Encenillo</td>
</tr>
<tr>
<td>Cyatheaceae</td>
<td>Cythea medullaris</td>
<td>Helecho</td>
</tr>
<tr>
<td>Dennstaedtiaceae</td>
<td>Pteridium aquilinum (l.) Kuhn</td>
<td>Helecho marranero</td>
</tr>
<tr>
<td>Elaeocarpaceae</td>
<td>Vallea stipularis L. f.</td>
<td></td>
</tr>
<tr>
<td>Fabácea</td>
<td>Acacia decurrens</td>
<td>Acacia</td>
</tr>
<tr>
<td>Familia</td>
<td>Especie</td>
<td>Nombre vernáculo</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>Fabácea</td>
<td>Acacia melanoxilon R. Br.</td>
<td>Acacia</td>
</tr>
<tr>
<td>Fagáceae</td>
<td>Quercus Humboldt</td>
<td>Roble</td>
</tr>
<tr>
<td>Melastomataceae</td>
<td>Micovia sguamulosa Smith</td>
<td>Tuno Esmeraldia</td>
</tr>
<tr>
<td>Melastomatáceae</td>
<td>Miconia ligustrina (Sm.) Triana</td>
<td>Tuno</td>
</tr>
<tr>
<td>Mircáceae</td>
<td>Myrica parvifolia</td>
<td></td>
</tr>
<tr>
<td>Myrsináceae</td>
<td>Myrsine guianensis (aubl.) Kuntze</td>
<td>Cucharro</td>
</tr>
<tr>
<td>Myrtaceae</td>
<td>Psidium guajava</td>
<td>Guayabo</td>
</tr>
<tr>
<td>Poaceae</td>
<td>Holcus lanatus I</td>
<td>Falsa poa</td>
</tr>
<tr>
<td>Poaceae</td>
<td>Hyparrhenia rufa</td>
<td></td>
</tr>
<tr>
<td>Poaceae</td>
<td>Dactylis glomerata</td>
<td>Pasto azul</td>
</tr>
<tr>
<td>Poaceae</td>
<td>Anthoxanthum odoratum I</td>
<td>Grama de olor</td>
</tr>
<tr>
<td>Poaceae</td>
<td>Chusquea scandens kunth</td>
<td>Chusque</td>
</tr>
<tr>
<td>Poaceae</td>
<td>Panicum maximun</td>
<td>Guinea</td>
</tr>
<tr>
<td>Poaceae</td>
<td>Pennisetum clandestinum hochst ex chior</td>
<td>Kikuyo</td>
</tr>
<tr>
<td>Rosáceae</td>
<td>Rubus ulmifolius</td>
<td>Uva</td>
</tr>
<tr>
<td>Poaceae</td>
<td>Trifolium repens L.</td>
<td>Trebol</td>
</tr>
<tr>
<td>Salicáceae</td>
<td>Xylosma spiculiferum (Tul.) Triana & Planch.</td>
<td></td>
</tr>
<tr>
<td>Verbenáceae</td>
<td>Duranta mutissii L.F</td>
<td></td>
</tr>
</tbody>
</table>
3 GEOLOGIA
Dentro del área de estudio, afloran rocas del Grupo Farallones, las Formaciones Lutitas de Macanal, Areniscas de las Juntas, Fómeque y algunos depósitos cuaternarios recientes.

3.1. GEOLOGÍA HISTÓRICA
La cordillera oriental a la cual pertenece la zona estudiada a través de su historia geológica ha sido sometida a grandes movimientos tectónicos como los ocurridos en la mitad del periodo Terciario entre el oligoceno y el mioceno en donde se produjeron levantamientos y hundimientos. Estos movimientos originaron varios plegamientos y también fallas paralelas y transversales. El ambiente de depositación de las diferentes formaciones aflorantes en el área, ha sido producto de la transgresión que sucedió a principios del cretáceo desde el Turoniano hasta el Maestrichtiano y se caracteriza por la ocurrencia de un mar profundo dando origen a depósitos de sedimentos de facies marinas y la acumulación de restos de seres vivos que darían lugar a la formación de fosforita, posteriormente el tectonismo y la orogénesis tiene marcada importancia sobre las diferentes formaciones hasta el momento conformadas.

3.2. GEOLOGÍA LOCAL.
3.2.1. Formación Lutitas de Macanal (Kilm).
Corresponde a un conjunto monótono de lutitas negras con esporádicas intercalaciones de Calizas, areniscas y bolsones de yeso; depositadas en un ambiente marino de aguas someras en una cuenca cerrada, su localidad tipo se localiza en el cañón del río Batá, entre las quebradas El Volador y La Esmeralda.
3.2.2. Depósito Coluvial (Qc).
Constituidos por grandes bloques de 50 cm hasta 1.5 m de diámetro o mayores que provienen de formaciones duras y empinadas.
4 GEOMORFOLOGÍA

Se entiende como geomorfología el análisis o estudio de las formas del relieve, los procesos que condujeron a su formación y su interrelación con su entorno paisajístico. Las geoformas y procesos involucrados para el municipio de Macanal, se pueden distinguir claramente 5 unidades geomorfológicas, diferenciadas por su relieve y procesos geodinámicos, las cuales son; lomas bajas, taludes mixtos, contrapendiente estructural y depósito; aluvial tal como se muestra en la Figura 17.

Figura 17. Ventana extraída del mapa regional de Consultoría para la Homologación y Estructuración de la Información Cartográfica Base

Fuente: CORPOCHIVOR para ser integrada al SIAT.
- **Lomas bajas**
 Lomas disectadas y erosionadas producto de la acción de agentes denudativos, se reconocen por ser geoformas que no superan los 300 m de diferencia de altura entre la parte más baja y su cima y que generalmente siempre tiene una forma redondeada.

- **Contrapendiente estructural**
 Son geoformas empinadas localizadas en dirección opuesta al acimut del buzamiento de las capas, casi siempre están asociadas a las laderas estructurales, compuestas principalmente por materiales de las formaciones Conejo y Plaeners, constituidos por arcillolitas intercaladas con areniscas y Cherts con niveles arcillosos respectivamente.

- **Deposito aluvial**
 Geoformas originadas por la depositación de sedimentos durante la migración fluvial. Incluye diferentes niveles de terrazas, en general son materiales no consolidados y poco cohesivos.

4.1 GEOMORFOLOGÍA LOCAL
La geomorfología describe las formas del relieve, tanto estructural como superficial, y estudia su origen y evolución.

En este numeral, se realiza un análisis de las fotografías aéreas y se describen los procesos morfodinámicos cartografiados en la zona de estudio y las unidades geomorfológicas establecidas de acuerdo a las necesidades de los análisis de estabilidad y amenaza por fenómenos de remoción en masa.
Igualmente, se aclaran los criterios utilizados para definir las unidades geomorfológicas. Como resultado final, se elaboró el Plano geomorfológico del área de estudio y las fichas de los Inventarios de los procesos.

4.1 ANÁLISIS FOTOGEOLÓGICO
Revisión y fotointerpretación de fotografías aéreas del área de estudio, para determinar las Unidades Geológicas Superficiales (unidades de roca, suelos residuales y transportados) y geoformas asociadas a éstas, así como los procesos morfo dinámicos y rasgos estructurales, entre otros.

En el análisis se define el área de influencia del proceso dada por las divisorias de aguas, se identifica los materiales duros y blandos, las zonas de infiltración, acumulación de aguas.

Como conclusión, se puede afirmar que las condiciones naturales o iniciales del terreno muestran dinámicas de acumulación de material y estancamiento de aguas en dichas áreas. Los problemas de inestabilidad que se presentan en base a esta dinámica, disparada por lluvias intensas y la intervención antrópica en el área por cortes en la vía y desforestación.
Figura 18. Fotografías pertenecientes al vuelo 2564-99,100 tomadas por el IGAC, durante los años 90.

Fuente: Resultado del estudio.

4.2 PROCESOS MORFODINÁMICOS
En el Plano de Geomorfología se localizaron los diferentes procesos morfodinámicos observados en la zona. A continuación, se describe en forma general las características de estos de acuerdo a la clasificación de Varnes. Las Fichas de Inventario de procesos se presentan en el anexo de estas.

4.2.1 Desprendimiento
Es un movimiento en masa en el cual se identifica roca y suelo desprendido de ladera con cierto grado de inclinación de la pendiente, tiene comportamiento remontante, causados por socavación de taludes debido a la acción del rio, dicha socavación provoca el retroceso del material del talud perdiendo apoyo en
su base, se van desplomando progresivamente. Por ello representa un papel esencial en la formación y migración del meandro. En el área predomina una vegetación rala y pequeña, incapaz de retener el suelo, donde facilita la inestabilidad de proceso.

Figura 19. Esquema del movimiento, desprendimiento

Fuente: Resultado del estudio.

En el perfil (Ver Figura 20) se ilustra el cuerpo del proceso y la geoforma en la cual se encuentra, siendo favorable a su movimiento.
4.3 INCLINACIÓN DE LAS PENDIENTES

A partir de un modelo digital de terreno generado tras la digitalización de curvas de nivel a una escala 1:25.000, se generó el mapa de pendientes con cinco clases para el área de estudio. Los valores de susceptibilidad de este parámetro o variable son presentados en la Figura 21.
Figura 21. Imagen del Mapa de inclinación de las pendientes.

Fuente: Resultado del estudio.

<table>
<thead>
<tr>
<th>UNIDAD CARTOGRÁFICA</th>
<th>GRADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suavemente inclinada</td>
<td>0-10</td>
</tr>
<tr>
<td>Inclinada</td>
<td>10-15</td>
</tr>
<tr>
<td>Abrupta</td>
<td>15-30</td>
</tr>
<tr>
<td>Escarpada</td>
<td>30-45</td>
</tr>
<tr>
<td>Muy Escarpada</td>
<td>> 45</td>
</tr>
</tbody>
</table>

Fuente: Resultado del estudio.
4.4 UNIDADES GEOMORFOLÓGICAS
Teniendo en cuenta, las necesidades de los análisis de estabilidad y amenaza por fenómenos de remoción en masa y la relación de estas con los procesos de inestabilidad, se delimitaron cinco (5) unidades geomorfológicas de carácter local denominadas como:

Figura 22. Imagen del Mapa geomorfológico.

4.4.1 Geoformas de Origen Denudacional.

Dentro de las unidades de origen denudativo en la zona se evidenciaron las siguientes unidades:
4.4.1.1 **Unidad agradacional con inclinaciones mayores a 30 grados en ladera en contra pendiente (UA c2)**

Dicha unidad está compuesta por depósitos coluviales, los cuales yacen sobre estratificaciones en contra a la dirección de las pendientes presenta un área de 1.99 ha, de las cuales el 18.52 % presenta inestabilidad.

4.4.1.2 **Unidad agradacional con inclinaciones mayores a 30 grados en ladera estructural (UA e2)**

Dicha unidad está compuesta por depósitos coluviales, los cuales yacen sobre estratificaciones en contra a la dirección de las pendientes presenta un área de 6.73 ha, de las cuales el 14.9 % presenta inestabilidad.

4.4.1.3 **Unidad degradacional con inclinaciones mayores a 30 grados en ladera en contra pendiente (UD c2)**

Dicha unidad está compuesta por formaciones rocosas, cuyas estratificaciones se encuentran en contra a la dirección de las pendientes, presenta un área de 1.97 ha.

4.4.1.4 **Unidad degradacional con inclinaciones entre 0 y 30 grados en ladera estructural (UD e1)**

Dicha unidad está compuesta por formaciones rocosas, cuyas estratificaciones se encuentran en contra a la dirección de las pendientes, presenta un área de 6.3 ha, de las cuales el 0.59 % presenta inestabilidad.
4.4.1.5 Unidad degradacional con inclinaciones mayores a 30 grados en ladera estructural (UD e2)

Dicha unidad está compuesta por formaciones rocosas, cuyas estratificaciones se encuentran en contra a la dirección de las pendientes, presenta un área de 6.53 ha, de las cuales el 2.61 % presenta inestabilidad.

A continuación describimos en la Tabla 15, la descripción y análisis de las unidades geomorfológicas

####Tabla 15. Descripción geomorfológica.

<table>
<thead>
<tr>
<th>ORIGEN</th>
<th>ESTRUCTURA</th>
<th>MORFOMETRIA</th>
<th>MORFODINAMICA</th>
<th>SÍMBOLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidad agradacional</td>
<td>ladera en contra pendiente</td>
<td>con inclinaciones mayores a 30 grados</td>
<td></td>
<td>UA c2</td>
</tr>
<tr>
<td></td>
<td>ladera estructural</td>
<td>con inclinaciones mayores a 30 grados</td>
<td></td>
<td>UA e2</td>
</tr>
<tr>
<td>Unidad degradacional</td>
<td>ladera en contra pendiente</td>
<td>con inclinaciones mayores a 30 grados</td>
<td></td>
<td>UD c2</td>
</tr>
<tr>
<td></td>
<td>ladera estructural</td>
<td>con inclinaciones entre 0 y 30 grados</td>
<td></td>
<td>UD e1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>con inclinaciones mayores a 30 grados</td>
<td></td>
<td>UD e2</td>
</tr>
</tbody>
</table>

Fuente: Resultado del estudio.
4.5 EROSIÓN
La erosión se define como la remoción de partículas de suelo debido a la acción de fenómenos climatológicos, como son la lluvia, el viento y el oleaje. La magnitud del material removido depende del grado de interperismo del suelo.

El fenómeno de erosión se considera como un proceso lento, cuando es en forma natural, y sus manifestaciones no se identifican a corto plazo sino cuando se encuentra en una fase final, desgraciadamente cuando se ha perdido la mayor cantidad de suelo fértil. Al intervenir el hombre, para abrir caminos, desmontar áreas para campos de cultivo, explotar los bosques, ampliar las zonas urbanas, etc. entonces, se altera el equilibrio natural y se acelera el proceso. Este fenómeno implica dos problemas importantes: por un lado es la pérdida de suelo en la cuenca, sobre todo la pérdida de suelo fértil en los campos de cultivo con cierta inclinación y por otro lado el depósito del sedimento en embalses o en sitios donde esto es indeseable.

Existen dos clases de erosión, la geológica y la antrópica.

La erosión geológica, que ocurre en forma lenta, y es el desgaste natural de la tierra en busca de su propia estabilización, sus factores son el agua lluvia, las corrientes fluviales, el mar, el viento, la temperatura, la gravedad. La erosión geológica contribuye a la modelamiento de la superficie del terreno y a la formación de los suelos.

La erosión antrópica o acelerada, es propiciada por el hombre, y sucede al utilizar inadecuadamente el suelo; cultivos, tala de bosques, quemas, construcciones; entre otros. Estos procesos debilitan la capacidad del terreno, acelerando la erosividad y causando problemas de desestabilización.
La erosión antrópica o acelerada, favorece la aparición de surcos y cárcavas que representan un grado superior del proceso de erosión que se manifiesta en los suelos. Su formación tiene origen en el drenaje superficial y es aumentada por el incremento del tiempo de concentración

El viento y el agua son los principales agentes generadores de erosión y de acuerdo al agente erosivo se distinguen dos formas de erosión.

Erosión Eólica. Donde quiera que el suelo sea débilmente agregado, seco, la superficie lisa y desnuda y en donde los vientos sean fuertes, se podrá presentar erosión eólica, que de hecho es más fuerte en regiones de clima árido y semiárido. No obstante puede presentarse erosión eólica severa en algunas regiones húmedas, donde los vientos fuertes pueden desarrollarse moviendo dunas en zonas costeras.

Erosión Hídrica. Es un proceso continuo que consiste en la separación de las partículas y agregados de la masa del suelo, su transporte y sedimentación, siendo el agente activo, el agua.

La erosión hídrica se inicia cuando las gotas de lluvia golpean en la superficie de un suelo desnudo, causando el movimiento de las partículas más finas como sedimentos en suspensión en el flujo del agua, el cual en su movimiento cuesta abajo, va abriendo surcos. Cada lluvia subsecuente, erosiona cantidades adicionales de suelo; con la degradación del suelo, se manifiesta la degradación de la tierra.
Este tipo de erosión, se ve propiciada cuando se remueve la cobertura vegetal por el laboreo para los cultivos, la quema de residuos de cosecha, el sobrepastoreo, deforestación y por la perturbación del suelo al paso de maquinaria pesada en la construcción de vías, obras de infraestructura y minería.

4.5.1 Algunas Formas de Erosión
El proceso de erosión tiene diferentes formas de expresión dependiendo de la concentración del agua. Comenzando con la erosión laminar, erosión en surcos, y en la medida que el agua forma pequeños cauces, erosión en cárcavas.

La erosión laminar es el arrastre casi uniforme de delgadas capas de suelo. Por su parte, la erosión en surcos comienza con transporte de material desprendido por salpicadura de gotas de lluvia (Hudson, 1981). Esta erosión es producida por la escorrentía concentrada y forma pequeños canales.

La erosión en canales es el proceso de desprendimientos y transporte de suelo. Las cárcavas ocurren cuando hay mayor concentración del escurrimiento y la topografía permite la unión de los surcos. El ancho de las cárcavas crece por socavación.

4.5.2 Factores externos
Son aquellos que disparen o detonan la inestabilidad en la ladera. Una causa desencadenante pequeña, puede ser suficiente para provocar la inestabilidad, esos factores pueden ser:

- **Naturales**: Las precipitaciones pluviales normales y extraordinarias, la filtración de agua pluvial en el terreno, las variaciones de temperatura, sismos.
- **Antrópicos**: Tales como deforestación, quemazones e incendios forestales, cortes de taludes para construcción de carreteras u otra infraestructura, el asentamiento humano en las laderas, la actividad minera, el uso indebido del suelo, etc.

4.5.3 Factores internos
Existen una variedad de factores condicionantes que inciden en los procesos de inestabilidad de laderas y son relativos a la propia naturaleza o características de las laderas, esos factores pueden ser:

- **Geológicos**: Representan un factor de inestabilidad permanente; la litología, la estratigrafía de la roca (orientación y ángulo de inclinación), discontinuidades estratigráficas y estructurales y la alteración de las rocas (alteración hidrotermal y/o meteorización).

- **Hidrológicos e hidrogeológicos**: Cambio en las presiones de poros o Hidrostáticas y el comportamiento geomecánico (resistencia a la deformabilidad, compresibilidad, cohesión, etc.).

A partir del análisis del procesamiento digital de imágenes, se obtuvo un mapa de intensidad de erosión las cuales nos dan una idea de los diferentes tipos de erosión reñfjado en la zona dándonos unidades de intensidad de erosión así: erosión baja, erosión moderada y erosión alta.

4.5.4 Morfodinámica - intensidad de erosión
El enfoque de este estudio se orienta hacia la caracterización y cartografía de las unidades de cobertura de los suelos como factor de resistencia o favorecimiento de los procesos erosivos y de remoción en masa.
El mapa de erosión fue realizado con el procesamiento digital de imágenes mediante una clasificación supervisada, resultado de un agrupamiento en la distribución de los pixeles hechos en una clasificación resultado de la mayor o menor cobertura vegetal presente en el área.

Posteriormente para cumplir con los objetivos del estudio y conocer la dinámica del área, realizamos la suma en un SIG (utilizando los mapas densidad de drenaje, geomorfológico y de cobertura) junto con los levantamientos en campo y la ubicación de procesos morfodinámicos obteniendo un mapa final de erosión.

La morfodinámica es la parte de la geomorfología que trata el estudio de los procesos morfodinámicos presentes y pasados.

El mapa de intensidad de erosión describe unidades de intensidad de erosión así: erosión muy baja, erosión baja, erosión media y erosión muy alta. (Ver Figura 23)

Figura 23. Imagen del Mapa erosión.

Fuente: Resultado del estudio.
5 HIDROGEOLOGÍA

Basados en el análisis de la información hidrológica y climatológica disponible, se estudió la dinámica de la escorrentía superficial y su relación con la geología del subsuelo, para describir las principales características hidrogeológicas del municipio de Almeida, analizar la presencia de posibles acuíferos, con el fin de conocer las condiciones que influyen en el deslizamiento.

5.1. Unidades Hidrogeológicas.

Basado en el levantamiento geológico del área en escala 1:2000 y la información tomada en campo, se agruparon en unidades litoestratigráficas de acuerdo con sus características hidráulicas, definiéndose tres unidades hidrogeológicas; cada una de las unidades se clasifica como: Acuífero, Acuitardo y/o Acuicierre, dependiendo de sus características de porosidad y permeabilidad, así:

5.1.1. Acuífero.

Unidad geológica que almacena y transmite agua con mucha facilidad, por tanto presenta una porosidad y permeabilidad muy alta.

5.1.2. Acuitardo.

Son aquellas rocas que almacenan una gran cantidad de agua pero la transmiten muy lentamente, siendo aptas solo para bajas captaciones, entre ellas están los materiales arcillo-arenosos. Se consideran como sinónimos de Acuicierre, ya que con el tiempo los espacios intergranulares tienden a sellarse formando estratos permeables que aunque pueden contener grandes cantidades de agua no permiten su flujo a través de sus poros.
5.1.3. Acuicierres.
Son formaciones capaces de contener agua, pero incapaces de transmitirla en cantidades suficientes como para su captación o formación de manantiales importantes.

5.2. MARCO HIDROGEOLÓGICO GENERAL

5.2.1. UNIDAD I (Permeabilidad Alta)
Se encuentran Depósitos de tipo Coluvial (Qc), con alta porosidad y permeabilidad primaria, debido a la distribución de los poros que se encuentran conectados entre sí, lo que genera que los fluidos se transmitan más rápidamente.

5.2.2. UNIDAD III (Permeabilidad Baja)
Rocas con porosidad pero que no permiten el tránsito a través de ellas porque su permeabilidad es muy baja; constituidas por intercalaciones de lutitas, presentes en la Formación Lutitas de Macanal (Kilm), las cuales se clasifican como acuicierres.

ELABORACIÓN DE ESTUDIO DE RIESGO (AMENAZA Y VULNERABILIDAD) Y DISEÑO DE OBRAS DE ESTABILIZACIÓN EN LA VEREDA SERRANIAS, MUNICIPIO DE MACANAL JURISDICCIÓN DE LA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR (CORPOCHIVOR).
6 GEOELECTRICA

6.1. ESTUDIO GEOELECTRICO (TOMOGRAFIA ELECTRICA RESISTIVA)

6.2. INTRODUCCION
Las Tomografías Eléctricas Resistivas (TER) son métodos geofísicos de exploración o Ingeniería Geofísica, los cuales están constituidos por una serie de técnicas que permiten medir las variaciones de diversas propiedades físicas en los materiales que forman la corteza terrestre tales como: densidad, susceptibilidad magnética, velocidad de propagación de las ondas elásticas, resistividad eléctrica o la radioactividad natural de las rocas, entre otras. La medición y distribución de estas variaciones, permite inferir algunas condiciones litológicas y estructurales del subsuelo, correlacionando los valores medidos o zonas anómalas, con los efectos calculados de los modelos de laboratorio, en los que se conocen las relaciones causa-efecto en términos de una función matemática.

La Tomografía Eléctrica Resistiva es una técnica geofísica para generar secciones o perfiles del subsuelo en base a mediciones de caída de potencial eléctrico. Éste método consiste en inyectar una corriente al interior del suelo, la cual, regresa al voltímetro en forma de una diferencia de potencial (ΔV) producto de las variaciones en resistencia que resultan de cada tipo de material o estrato de suelo (Figura 24); sabiendo de antemano que cada tipo de material tiene diferente manera a “resistir” una corriente eléctrica, los buenos conductores o materiales humedecidos presentan una resistencia baja a la inyección de corriente, mientras que materiales aislantes presentan resistencias eléctricas mayores (Figura 25). Lo anterior, es relativo a diversos parámetros geológicos como el contenido mineralógico y de humedad, así como la porosidad y grado de saturación de agua.
dentro del material de estudio. Durante décadas, los Estudios de Resistividad Eléctrica han sido utilizados en investigaciones sobre hidrogeología, geotecnia y también actualmente en estudios ambientales (Loke 2004).

Figura 24. Principio teórico de operación de las TER’s.

Fuente: aplicación de la tomografía eléctrica para la caracterización de un deslizamiento de ladera en un vertedero, Aracil Avila, Jose Angel.
Se describe en este trabajo la metodología empleada para realizar levantamientos geofísicos de resistividad, aplicados a estudios del subsuelo enfatizando el hecho de que son métodos totalmente indirectos. El objetivo fundamental de tales estudios es el de medir contrastes de resistividad entre estructuras u objetos de interés con las rocas circundantes. Se analiza la importancia del estudio de la resistividad eléctrica de los suelos y se enumeran los factores más importantes que determinan sus valores para diversos materiales geológicos. En lo referente al método de resistividad, se describe a detalle el principio fundamental que gobierna su empleo en la práctica para estudios del subsuelo.

La adquisición de datos de campo puede llevarse a cabo con configuraciones de
electrodos que pueden variar su arreglo y que dependen estrictamente del objeto para el cual se realiza la exploración. De introducción reciente es la tomografía eléctrica, técnica multielectródica en la que todo el proceso de adquisición de datos está totalmente automatizado. Esto nos permite poder realizar un gran número de medidas, tanto en profundidad como lateralmente, en un breve espacio de tiempo (del orden de 500 medidas en una hora y media), obteniendo por tanto modelos 2-D de gran resolución.

6.3. OBJETIVO
Como apoyo al estudio geotécnico y de estabilidad que se está realizando para el convenio interadministrativo UPTC-CORPOCHIVOR, en el sector vereda Serranías, del municipio de Macanal, se realiza un estudio geofísico con la finalidad de determinar el comportamiento del material y continuidad del mismo en profundidad.

6.4. PRINCIPIO DEL METODO GEOFISICO.

6.4.1. Resistividad Aparente:
Está regida por la ley de Ohm dice que la intensidad de la corriente que circula entre dos puntos de un circuito eléctrico es proporcional a la tensión eléctrica entre dichos puntos. Esta constante es la conductancia eléctrica, que es la inversa de la resistencia eléctrica.

La intensidad de corriente que circula por un circuito dado es directamente proporcional a la tensión aplicada e inversamente proporcional a la resistencia del mismo.

La ecuación matemática que describe esta relación es:
\[I = GV = \frac{V}{R} \]

Donde, \(I \) es la corriente que pasa a través del objeto en amperios, \(V \) es la diferencia de potencial de las terminales del objeto en voltios, \(G \) es la conductancia en siemens y \(R \) es la resistencia en ohmios (Ω). Específicamente, la ley de Ohm dice que \(R \) en esta relación es constante, independientemente de la corriente.

Definición.

Es la variable experimental que expresa los resultados de las mediciones en TGé y la que se toma como base para la inversión y posterior interpretación. Esta está definida por la ecuación:

\[\rho a = K = \frac{\Delta V}{I} \]

Donde \(K \) es la constante de normalización de cada dispositivo o factor geométrico, \(\Delta V \) es la diferencia de potencial medido sobre el terreno, e \(I \) la corriente inyectada.

Su relación con los elementos del Subsuelo.

En la Tabla 16, se observan los valores de resistividad de las rocas más comunes, materiales de suelo y algunas sustancias químicas (Keller y Frischknecht 1966, Daniels y Alberty 1966, Orellana 1982).

El suelo es una mezcla de partículas sólidas, gases, agua y otros materiales orgánicos e inorgánicos. Esta mezcla hace que la resistividad del suelo aparte de...
depender de su composición intrínseca, dependa de otros factores externos como la temperatura, la humedad, presión, etc. que pueden provocar que un mismo suelo presente resistividades diferentes con el tiempo. De entre todos los factores, la humedad es el más importante; además, es el que se puede alterar más fácilmente mediante la lluvia o el riego del suelo.

Diferentes contenidos de humedad en un mismo terreno darían lugar a resistividades diferentes que podrían llevarnos a interpretaciones erróneas de los materiales constituyentes del suelo. En la Tabla 16 se encuentra un conjunto de valores típicos de resistividad de geomateriales.

<table>
<thead>
<tr>
<th>Material</th>
<th>Resistividad (Ωm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basamento. Roca compacta con diálisis espaciadas</td>
<td>>10000</td>
</tr>
<tr>
<td>Basamento. Roca fracturada</td>
<td>1500-5000</td>
</tr>
<tr>
<td>Basamento. Roca fracturada saturada con agua corriente</td>
<td>100-2000</td>
</tr>
<tr>
<td>Basamento. Roca fracturada saturada con agua salada</td>
<td>1-100</td>
</tr>
<tr>
<td>Grus no saturado</td>
<td>500-1000</td>
</tr>
<tr>
<td>Grus saturado</td>
<td>40-80</td>
</tr>
<tr>
<td>Saprolito no saturado</td>
<td>200-500</td>
</tr>
<tr>
<td>Saprolito saturado</td>
<td>40-100</td>
</tr>
<tr>
<td>Gravas no saturadas</td>
<td>500-2000</td>
</tr>
<tr>
<td>Gravas saturadas</td>
<td>300-500</td>
</tr>
<tr>
<td>Arenas no saturadas</td>
<td>400-700</td>
</tr>
<tr>
<td>Arenas saturadas</td>
<td>100-200</td>
</tr>
<tr>
<td>Limos no saturados</td>
<td>100-200</td>
</tr>
<tr>
<td>Limos saturados</td>
<td>20-100</td>
</tr>
<tr>
<td>Limos saturados con agua salada</td>
<td>5-15</td>
</tr>
<tr>
<td>Arcillas no saturadas</td>
<td>20-40</td>
</tr>
<tr>
<td>Arcillas saturadas</td>
<td>5-20</td>
</tr>
<tr>
<td>Arcillas saturadas con agua salada</td>
<td>1-10</td>
</tr>
<tr>
<td>Andosoles secos</td>
<td>1000-2000</td>
</tr>
<tr>
<td>Andosoles no saturados</td>
<td>300-1000</td>
</tr>
<tr>
<td>Andosoles saturados</td>
<td>100-300</td>
</tr>
</tbody>
</table>

Fuente: Exploración Geotécnica-Relaciones Geoeléctricas- DANIEL EDUARDO ARIAS.
6.4.2. Dispositivos:

Un dispositivo es un arreglo de electrodos formado con dos pares de electrodos, dos emisores y dos receptores. A través de los electrodos emisores C1C2 se inyecta la corriente continua al terreno midiendo su intensidad con un miliamperímetro en serie, y a través del segundo par se mide la diferencia de potencial entre los electrodos P1P2 con un Milivoltímetro. Se tienen arreglos donde uno o dos electrodos se conectan a una distancia lo suficientemente grande, denominados remotos o infinitos, a la cual no producen perturbaciones en la zona de estudio.

En cualquier dispositivo electródico, si conocemos el factor geométrico k, la corriente eléctrica I inyectada por los electrodos A y B, y la diferencia de potencial entre los electrodos M y N, podemos calcular la resistividad aparente mediante $\rho = k \frac{\Delta V}{I}$. El dispositivo utilizado en en la tomografía realizada fue el siguiente:

Dispositivo Wenner.

Los electrodos se disponen equidistantes sobre una línea en el orden AMNB (Figura 26).

![Dispositivo Wenner](image)

Fuente: Aplicaciones de la tomografía eléctrica 2-d al estudio del subsuelo Javier S. Salgado.

El factor geométrico del dispositivo se deduce de $K = 2\pi(1/AM-1/AN-1/BM+1/BN)^\nu(-1)$, donde $K = 2 \tau a$
6.5. METODOLOGÍA

En su sentido más amplio la Tomografía es una técnica geofísica para el estudio del subsuelo que consiste en determinar la distribución de un parámetro físico característico del mismo dentro de un ámbito espacial limitado, a partir de un número muy elevado de medidas realizadas desde la superficie del terreno o desde sondeos.

La Tomografía eléctrica tiene por objetivo específico determinar la distribución real de la resistividad del subsuelo en el ámbito comprendido entre dos sondeos o bien hasta un cierto rango de profundidad a lo largo de un perfil de medida, a partir de los valores de resistividad aparente obtenidos mediante medidas realizadas por métodos convencionales de corriente continua. Un factor clave de esta técnica es el número y distribución de las medidas de campo ya que de él depende tanto su resolución como la profundidad de investigación. Como regla general, un estudio mediante Tomografía eléctrica requiere la obtención de un número muy elevado de datos, con un pequeño espaciado entre medidas para conseguir la necesaria resolución lateral que viene dada por la siguiente fórmula:

\[d = \frac{X_{total}}{N°electrodos} \]

Donde:
- \(d \) = Distancia entre electrodos
- \(X_{total} \) = Distancia de la línea extendida
- \(N°electrodos \) = electrodos a utilizar

También que las medidas se realicen involucrando de forma progresiva varios rangos de profundidad.
El resultado final de este tipo de estudio es una sección distancia-profundidad con la distribución de la resistividad real del subsuelo, fácilmente comprensible en términos geológicos o geotécnicos. Para obtener estos resultados se procede a insertar los parámetros para el cálculo y la medición de las resistividades en campo, utilizando el método o dispositivo de Wenner.

Para la realización de las tomografías en el sector Vereda Serranias, del municipio de Macanal, se utilizó el equipo TERRAMETER LS 04-064-250 propiedad de la U.P.T.C., con 2 carretes de 210 mts cada uno, 41 electrodos conectados cada uno respectivamente al equipo, para obtener así las siguientes líneas con su respectivo análisis.

6.5.1. TOMOGRAFIA N°1
Localizada en la parte alta del deslizamiento, Coordenadas parte inicial X: 1093067, Y: 1047897, parte final X: 1093134, Y: 1047920, orientación N70°E, con una longitud de 61.5 mts., profundidad obtenida de 11.1 mts., y los electrodos conectados a una distancia de 1.50 mts cada uno.
Figura 27. Localización líneas de tomografía.

Fuente: Resultado del estudio.

Fotografía 10. Vía Macanal.

Fuente: Registro fotográfico.
Tabla 17. Resistividades de los materiales presentes en el área de estudio.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>PROFUNDIDAD (m)</th>
<th>RESISTIVIDAD (Ω*m)</th>
<th>INTERPRETACIÓN GEOLÓGICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.375 – 3.00</td>
<td>2515 – 5660</td>
<td>Deposito cuaternario aluvial</td>
</tr>
<tr>
<td>2</td>
<td>0.375 – 4.5</td>
<td>943 – 2500</td>
<td>Intercalación Limos y Lutitas</td>
</tr>
<tr>
<td>3</td>
<td>4.6 – 11.1</td>
<td>155 – 942</td>
<td>Arcillas</td>
</tr>
</tbody>
</table>

Fuente: Resultado del estudio.

Figura 28. Perfil 1 tomografía.

Fuente: Resultado del estudio.
Figura 29. Perfil litológico 1

Fuente: Resultado del estudio.

6.5.2. TOMOGRAFIA N°2

Localizada en la parte media-alta del deslizamiento Coordenadas parte inicial X: 1093050, Y: 1047864, parte final X: 1093144, Y: 1047902, orientación N68°E, con una longitud de 102.5 mts, profundidad obtenida de 18.4 mts, y los electrodos conectados a una distancia de 2.50 mts cada uno.
Fotografía 11. Corona del deslizamiento.

Fuente: Registro fotográfico.

Fotografía 12. Corona del deslizamiento.

Fuente: Registro fotográfico.
Elaboración de estudio de riesgo (amenaza y vulnerabilidad) y diseño de obras de estabilización en la vereda Serranías, municipio de Macanal jurisdicción de la Corporación Autónoma Regional de Chivor (CORPOCHIVOR).

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>PROFUNDIDAD (m)</th>
<th>RESISTIVIDAD ($\Omega \cdot m$)</th>
<th>INTERPRETACIÓN GEOLÓGICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.625 – 6.72</td>
<td>2405 – 4798</td>
<td>Deposito cuaternario aluvial</td>
</tr>
<tr>
<td>2</td>
<td>6.72 – 8.0</td>
<td>161 – 2400</td>
<td>Limos</td>
</tr>
<tr>
<td>3</td>
<td>8.0 – 18.4</td>
<td>41 – 160</td>
<td>Arcillas</td>
</tr>
</tbody>
</table>

Fuente: Resultado del estudio.
Figura 30. Perfil 2 tomografía.

Fuente: Resultado del estudio.
6.5.3. RESULTADOS
Con ayuda del software Res2DINVX64, se relacionaron datos de las respectivas resistividades de los materiales del área obtenidas por el equipo, resultando así el modelamiento del talud, en la línea 1 se observa que el área está conformada por tres unidades Geoeléctricas bien definidas, donde encontramos niveles de arcillas con rangos de resistividades que oscilan entre 155 – 942 Ω*m, limos que poseen resistividades entre 943 – 2500 Ω*m , y finalmente un deposito cuaternario aluvial con rangos de resistividades que oscilan entre 2515 – 5660 Ω*m , ver Figura 28, Figura 29. Por parte de la línea 2 se puede observar que está conformada por tres unidades Geoeléctricas, el primer material compuesto por arcillas con rangos de resistividades que van entre 41 – 160 Ω*m, el segundo son limos, que poseen rangos de resistividades que van entre 161 – 2400 Ω *m, y el tercero es un deposito cuaternario aluvial que se correlacionan con la línea de tomografía N°1,
que poseen rangos de resistividades entre 2405 – 4798 \(\Omega \cdot m\), ver Figura 30, Figura 31.
7 GEOTECNIA

En este capítulo se consignan los aspectos relacionados con la evaluación geotécnica de los fenómenos de remoción en masa (FRM) en la vereda Serranias, municipio de Macanal, sucedidos desde hace unos años, y que han evolucionado hasta afectar considerablemente viviendas y la escuela presente en la zona.

Las principales fuentes de información para el estudio geotécnico fueron la observación de campo, los datos obtenidos de la exploración geofísica y geológica, la exploración directa y las pruebas de laboratorio.

A partir de la información obtenida, se realizó el diagnóstico de los distintos fenómenos de remoción en masa, estableciendo hipotéticamente los mecanismos de falla y planteando las medidas aplicables para el tratamiento de las zonas inestables.

7.1 EXPLORACIÓN DE CAMPO

7.1.1 Sondeos geotécnicos

7.1.1.1 Exploración indirecta del sub suelo

La exploración indirecta del sub suelo se realizó por medio de tomografías geoelectrías como se observa en el capítulo 6, el cual se llevó a cabo después de determinar que el método geoelectrónico convencional SEV, no aporta ningún tipo de información importante cuando se aplica al estudio de deslizamientos por tratarse de un medio muy fracturado con altas pendientes además de ser un material removido y saturado.
7.1.1.2 Exploración directa del sub suelo.

La exploración directa del sub suelo consiste en la realización una apique y una trinchera, De estos se tomaron muestras alteradas e inalteradas para realizar los ensayos pertinentes para caracterizar los materiales presentes en esta zona. Además se realizaron sondeos a profundidades de que van de 0 hasta los 8,50 metros de y sus ubicaciones se relacionan en la siguiente Tabla 19; de estos se realizaron los también ensayos de propiedades índices y propiedades mecánicas.

<table>
<thead>
<tr>
<th>Tabla 19. Coordenadas de los sondeos realizados</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sondeo</th>
<th>Coordenadas</th>
<th>Profundidad (metros)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Este</td>
<td>Norte</td>
</tr>
<tr>
<td>sondeo 1</td>
<td>1,093,108</td>
<td>1,047,914</td>
</tr>
<tr>
<td>sondeo 2</td>
<td>1,093,098</td>
<td>1,047,888</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la Investigación

De estos se obtuvieron perfiles geotécnicos del sitio como se observa en la Figura 32
Fotografía 13. Perforación realizada en la zona de estudio

Fuente: Registro Fotográfico.

También se realizaron pruebas in situ como la prueba de penetrometro de bolsillo como se observa en la Fotografía 14.
Fotografía 14. Prueba de Penetrometro de Bolsillo

Fuente: Registro Fotográfico.

7.2 CARACTERIZACIÓN DEL SUELO Y SUBSUELO

7.2.1 Trabajos de Laboratorio

De acuerdo con el muestreo anterior y con las muestras recolectadas tanto en los sondeos (Suelos) y en los afloramientos (Rocas), en el laboratorio de Mecánica de Suelos y Rocas de la UPTC Sede Sogamoso se realizaron pruebas índice (Límites de Atterberg, Granulometría, humedad natural, peso unitario), compresión inconfinada y corte directo.

7.2.2 Trabajos de Laboratorio

De acuerdo con el muestreo anterior y con las muestras recolectadas tanto en los sondeos (Suelos) y en los afloramientos (Rocas), en el laboratorio de Mecánica de Suelos y Rocas de la UPTC Sede Sogamoso se realizaron pruebas índice (Límites de Atterberg, Granulometría, humedad natural, peso unitario), compresión inconfinada y corte directo.
inconfinada y corte directo. Además de propiedades físicas y mecánicas de las rocas presentes en la zona de estudio, a continuación se realiza una descripción de las propiedades físicas y mecánicas de los suelos y rocas concluyendo con un numeral con los resúmenes de los resultados de estas pruebas.
Figura 32. Perfil Geotécnico S1

MEMORIA DE SONDEOS

PROYECTO: ESTUDIO DE AMENAZA Y VULNERABILIDAD MUNICIPIO DE MACANAL - DEPARTAMENTO DE BOYACÁ
PERFORACIÓN: S1
LOCALIZACIÓN: MUNICIPIO DE MACANAL - DEPARTAMENTO DE BOYACÁ
FECHA: AGOSTO DE 2013
COORDENADAS: E 1,093,108 N 1,247,914

graficas de parametros encontrados

<table>
<thead>
<tr>
<th>RESISTENCIA Kg/cm²</th>
<th>0-25</th>
<th>0,25 – 0,5</th>
<th>0,5 – 1</th>
<th>1 – 2</th>
<th>2 – 4</th>
<th>> 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° GOLPES PARA PENETRAR 6”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consistencia</td>
<td>May Blanda</td>
<td>Blanda</td>
<td>Media</td>
<td>Firme</td>
<td>Muy Firme</td>
<td>Dura</td>
</tr>
<tr>
<td></td>
<td>Alterado</td>
<td>Alterado</td>
<td>Alterado</td>
<td>Alterado</td>
<td>Alterado</td>
<td>Alterado</td>
</tr>
</tbody>
</table>

Fuente: Resultado del estudio

ELABORACIÓN DE ESTUDIO DE RIESGO (AMENAZA Y VULNERABILIDAD) Y DISEÑO DE OBRAS DE ESTABILIZACIÓN EN LA VEREDA SERRANIAS, MUNICIPIO DE MACANAL JURISDICCIÓN DE LA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR (CORPOCHIVOR).
7.2.2.1 Propiedades índices de los suelos

Límites de Atterberg: El contenido de agua con que se produce el cambio de estado varía de un suelo a otro y en mecánica de suelos interesa fundamentalmente conocer el rango de humedades, para el cual el suelo presenta un comportamiento plástico, es decir, acepta deformaciones sin romperse (plasticidad), es decir, la propiedad que presenta los suelos hasta cierto límite sin romperse.

Atterberg definió tres límites para la clasificación del suelo; el de retracción o consistencia que separa el estado de sólido seco y el semisólido, el límite plástico, que separa el estado semisólido del plástico y el límite líquido, WL, que separa el estado plástico del semilíquido; estos dos últimos límites (los más usados en la práctica) se determinan con la fracción de suelo que pasa por el tamiz n.° 40 A.S.T.M (0,1 mm).

<table>
<thead>
<tr>
<th>L. Contracción</th>
<th>L. Plástico</th>
<th>L. Líquido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sólido</td>
<td>Sem - Sólido</td>
<td>Plástico</td>
</tr>
<tr>
<td>0 W%</td>
<td></td>
<td>100 W%</td>
</tr>
</tbody>
</table>

Fuente: Juárez Badillo y Rico Rodríguez

Humedad natural: Se denomina humedad natural o contenido de agua de un suelo, a la relación entre el peso de agua contenido en el mismo y el peso de su fase sólida, este se expresa como porcentaje.

Peso unitario: El peso unitario es definido como la masa de una masa por unidad de volumen. El peso unitario del suelo varía de acuerdo al contenido de agua que tenga el suelo, que son: húmedo (no saturado), saturado y seco.
Granulometría: Se denomina clasificación granulométrica o granulometría, a la medición y gradación que se lleva a cabo de los granos de una formación sedimentaria, de los materiales sedimentarios, así como de los suelos, con fines de análisis, tanto de su origen como de sus propiedades mecánicas, y el cálculo de la abundancia de los correspondientes a cada uno de los tamaños previstos por una escala granulométrica.

7.2.2.2 Propiedades mecánicas de los suelos

Compresión no confinada: El objetivo primario del ensayo de compresión no confinada es obtener rápidamente un valor aproximado de la resistencia a la compresión de los suelos que tienen suficiente cohesión para ser sometidos a dicho ensayo.

Fotografía 15. Muestra fallada en el ensayo de compresión no confinada.

Corte directo: Con el ánimo de establecer la resistencia al corte de algunos de los materiales más débiles dentro del área de estudio, se llevaron a cabo pruebas de corte directo en los suelos presentes para establecer las condiciones de
resistencia disponible en la zona y llegar a realizar el análisis con respecto a las fuerzas actuantes.

Nota (*): Debido al grado de alteración se optó por realizar las pruebas de corte directo con muestras remoldeadas, esto tanto como para las pruebas de corte directo como para compresión no confinada.

Fotografía 16. Muestras a las que se les realizó la prueba de corte directo.

Fuente: Resultado del estudio.

7.2.3 Resumen de resultados

En general los ensayos realizados reflejan la particularidad de materiales finos en el subsuelo según la Carta de Clasificación de Casagrande, los suelos fueron clasificados dentro del grupo M-L, con peso unitario de 1.39 – 2.12 gr/cm3, con límite líquido < 37% e IP entre 1% y 12%. Los resultados de las propiedades mecánicas reflejan una resistencia a la compresión simple de 3.58 kg/cm2, cohesión de 0.21 – 1.8 Kgf/cm², ángulos de fricción entre 10º y 12º. Estos resultados de las propiedades físicas y mecánicas se utilizaron para el análisis de estabilidad. En el anexo 4, se presentan los formatos correspondientes a los ensayos de laboratorio, de los cuales se presenta una tabla resumen (Tabla 20).
7.2.4 Clasificación Según el Índice Geológico de Resistencia (GSI):

Clasificación de macizos propuesta por Hoek y Brown, como un parámetro de condición del macizo rocoso en función de la condición estructural y del estado de las discontinuidades, para la aplicación del criterio generalizado de Hoek y Brown (2002), con el fin de establecer la envolvente de resistencia del macizo rocoso. Para su determinación se propone la utilización de la Figura 34.

Figura 34. Guía para la definición del Índice geológico de resistencia (GSI).

Fuente: Resultados de la investigación.
Dada la sencillez de la guía para la determinación del GSI, y en cierta medida su subjetividad se propone para valores de GSI mayores que 25 que este pueda ser establecido a partir del valor de clasificación RMR89, teniendo en cuenta que se debe tomar el valor RMR sin corrección por orientación de discontinuidades y una valuación de condiciones de agua subterránea igual a 15. De acuerdo a lo anterior el valor de GSI 52 respectivamente como se observa en la Tabla 20.
Elaboración de estudio de riesgo (amenaza y vulnerabilidad) y diseño de obras de estabilización en la vereda Serranías, municipio de Macanal jurisdicción de la Corporación Autónoma Regional de Chivor (CORPOCHIVOR).

<table>
<thead>
<tr>
<th>SONDEO / APIQUE N°</th>
<th>MUESTRA N°</th>
<th>TIPO DE MUESTRA</th>
<th>PROF. (m)</th>
<th>E</th>
<th>N</th>
<th>Wn (%)</th>
<th>LL</th>
<th>LP</th>
<th>IP</th>
<th>CLASIF (U.S.C.)</th>
<th>P.T.N° 200</th>
<th>%</th>
<th>φ</th>
<th>C</th>
<th>Peso Unido</th>
<th>Peso Unitario</th>
<th>qu</th>
<th>C</th>
<th>Peso Bolso</th>
<th>BOLSOLO Kg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 1</td>
<td>1</td>
<td>1,00</td>
<td>1,093,108</td>
<td>1,047,914</td>
<td>27,39</td>
<td>1,093,108</td>
<td>1,047,914</td>
<td>27,39</td>
<td>5,014</td>
<td>2,0535</td>
<td>1,7957</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,80</td>
<td>1,093,108</td>
<td>1,047,914</td>
<td>16,06</td>
<td>30,16</td>
<td>23,23</td>
<td>6,93</td>
<td>5,23</td>
<td>2,1061</td>
<td>1,8079</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2,50</td>
<td>1,093,108</td>
<td>1,047,914</td>
<td>12,41</td>
<td>29,48</td>
<td>27,78</td>
<td>1,70</td>
<td>5,56</td>
<td>2,0483</td>
<td>1,6427</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3,25</td>
<td>1,093,108</td>
<td>1,047,914</td>
<td>12,58</td>
<td>37,14</td>
<td>25,00</td>
<td>12,14</td>
<td>6,249</td>
<td>1,8477</td>
<td>0,92385</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4,70</td>
<td>1,093,108</td>
<td>1,047,914</td>
<td>27,77</td>
<td>30,84</td>
<td>22,45</td>
<td>8,39</td>
<td>5,272</td>
<td>1,9834</td>
<td>1,6151</td>
<td>4,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5,80</td>
<td>1,093,108</td>
<td>1,047,914</td>
<td>21,42</td>
<td>28</td>
<td>15,42</td>
<td>12,58</td>
<td>7,018</td>
<td>1,5301</td>
<td>2,3907</td>
<td>1,19335</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7,50</td>
<td>1,093,108</td>
<td>1,047,914</td>
<td>9,15</td>
<td>23,62</td>
<td>19,32</td>
<td>4,30</td>
<td>7,403</td>
<td>0,4164</td>
<td>0,2082</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2 1</td>
<td>1</td>
<td>1,20</td>
<td>1,093,098</td>
<td>1,047,888</td>
<td>27,91</td>
<td>8,16</td>
<td>23,24</td>
<td>18,42</td>
<td>5,808</td>
<td>1,5803</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,90</td>
<td>1,093,098</td>
<td>1,047,888</td>
<td>27,44</td>
<td>24,33</td>
<td>18,07</td>
<td>6,26</td>
<td>7,009</td>
<td>1,2768</td>
<td>1,186</td>
<td>4,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2,60</td>
<td>1,093,098</td>
<td>1,047,888</td>
<td>27,24</td>
<td>21,41</td>
<td>19,15</td>
<td>2,26</td>
<td>7,612</td>
<td>1,9199</td>
<td>0,95995</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3,40</td>
<td>1,093,098</td>
<td>1,047,888</td>
<td>28,21</td>
<td>22,98</td>
<td>16,88</td>
<td>6,10</td>
<td>6,149</td>
<td>1,9821</td>
<td>0,99105</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4,55</td>
<td>1,093,098</td>
<td>1,047,888</td>
<td>25,82</td>
<td>25,52</td>
<td>20,00</td>
<td>5,52</td>
<td>7,961</td>
<td>2,619</td>
<td>1,3095</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6,15</td>
<td>1,093,098</td>
<td>1,047,888</td>
<td>19,64</td>
<td>24,56</td>
<td>18,18</td>
<td>6,38</td>
<td>7,873</td>
<td>0,8944</td>
<td>0,4472</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8,00</td>
<td>1,093,098</td>
<td>1,047,888</td>
<td>21,63</td>
<td>8,00</td>
<td>21,63</td>
<td>6,205</td>
<td>6,205</td>
<td>1,3857</td>
<td>0,765</td>
<td>0,3825</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Resultados de la investigación.
7.3 CINEMÁTICA DE LOS MOVIMIENTOS

El comportamiento cinemático de los movimientos complejo y depende de varios factores (Pellegrino y otros, 2000):

El volumen o caudal de suelo en movimiento. Este volumen puede ser suministrado por un deslizamiento o por varios deslizamientos.

La pendiente o canal sobre el cual fluye el suelo.

El contenido de agua.

7.4 CAUSAS DE LOS MOVIMIENTOS EN MASA

7.4.1 Causas Reales

Las causas directas de los fenómenos de remoción en masa corresponden a aquellos factores inherentes a la naturaleza del terreno, que lo hace potencialmente inestable. La ocurrencia generalmente está relacionada con la saturación de los materiales subsuperficiales. Algunos suelos absorben agua muy fácilmente y la saturación conduce a la formación del movimiento, también la susceptibilidad geomorfológica dadas las altas pendientes de algunos sectores, el tipo de material por tratarse de material coluvial, la condición de los materiales rocosos subyacentes al suelo, que se encuentra muy fracturado como producto del intenso fallamiento presente.
7.4.2 Causas Inmediatas

Las causas inmediatas son también conocidas como detonantes de la inestabilidad, y corresponden a aquellos factores exógenos que producen en últimas los movimientos del terreno.

Como detonantes de los eventos se han establecido los siguientes:

- La baja capacidad de capturar agua del material pero no de trasmitirla lo cual hacer que se generen grandes presiones las cuales generan la fuerza indicada para el desplazamiento del movimiento.

- El agua proveniente de las precipitaciones, que aunque no son frecuentes, han ocurrido en épocas que están asociadas a los mayores movimientos ocurridos.

- La baja resistencia al corte o de fricción del material en el cual se produce la superficie de falla.

- El mal uso de suelo, la ocupación de drenajes naturales para regadío de cultivos, tala y pastoreo.

- Los eventos sísmicos con alguna influencia en la zona se constituyen también en factores detonantes.

- Existen otros factores detonantes de menor importancia que pueden mencionarse, como las vibraciones y sobrecargas provenientes del tránsito vehicular, las sobrecargas asociadas a los botaderos y el mal uso del suelo.
7.5 ANÁLISIS DE ESTABILIDAD Y MODELACIÓN GEOTÉCNICA

La modelación geotécnica tiene como objetivo verificar las condiciones actuales de estabilidad de la vereda piedra larga, el cual afecta las viviendas presentes en la zona.

Los modelos constituyen simplificaciones de problemas complejos acorde con la realidad, que permiten comprender mejor el funcionamiento de un sistema, son muy utilizados en todas las ciencias, aunque adquieran una gran relevancia en la Ingeniería Geológica, para este modelamiento se deben tener en cuenta tres aspectos fundamentales, Modelo Geológico, Modelo Geomecánico, para así poder llegar al Modelos Geotécnico del comportamiento del terreno (Modelo Numérico). El modelamiento geotécnico se establece con estos criterios, la exploración del subsuelo y las condiciones geológicas encontradas vistas en los numerales anteriores. Debido a la complejidad del fenómeno de remoción en masa se sectorizo en tres partes a las cuales se le realizo su respectivo análisis mostrado en los perfiles de plano de exploración geotécnica.

La modelación se realizó con el programa de estabilidad de taludes Slide V.6, desarrollado por la firma Rocscience de Canadá, el cual trabaja con el método de equilibrio límite y dovelas. Dentro de los métodos de análisis se consideraron el método de felleniúus, el método de Bishop simplificado, y el método de Janbu Simplificado y Corregido.

Modelamiento del comportamiento hidráulico.
Respecto al agua subterránea, a pesar que en las exploraciones no se encontró un nivel freático, se consideró su efecto con el coeficiente Ru, coeficiente que se define como:
\[Ru = \frac{u}{\sigma_v}, \]

u: Presión de poros en la base de la dovela.
\(\sigma_v \): Esfuerzo vertical total en la base de la dovela.

El coeficiente Ru tiene un rango de variación de 0 (terreno seco) hasta 0,5 (terreno saturado).

Efecto de la Aceleración Sísmica en el Modelo.

El Municipio de Macanal se encuentra en una zona de Amenaza Sísmica Alta, de acuerdo a la Norma Colombiana Sismorresistente, por tanto el efecto sísmico es un aspecto relevante en la estabilidad de taludes. El efecto sísmico fue considerado con la aplicación de un análisis Pseudoestático a partir de la siguiente expresión:

\[\sum F = m \times a \]

Donde,
F: Fuerzas.
m: Masa de la dovela.
a: aceleración.

La aceleración aplicada a cada masa, corresponde a un porcentaje de la aceleración de la gravedad, el cual se define de acuerdo a los coeficientes de aceleración horizontal y vertical propuestos en la norma sismorresistente y a un coeficiente de reducción del coeficiente de aceleración, de acuerdo a las características del terreno. Para el Municipio de Macanal los coeficientes de aceleración horizontal (Aa) y vertical (Ad) son iguales a 0.14 y 0.06 respectivamente, de acuerdo a la NSR-10, sin embargo la versión vigente del código colombiano sismorresistente, indica que los coeficientes se tomen igual al
valor mayor, en este caso 0.20 y 0.20. El coeficiente de reducción de los coeficientes de aceleración para suelos y macizos rocosos con R.Q.D menores a 50%, es igual a 0.8 (Tabla 21).

Tabla 21. Coeficientes de aceleración sísmica para el departamento Boyacá

<table>
<thead>
<tr>
<th>N°</th>
<th>Municipio</th>
<th>Código</th>
<th>Aa</th>
<th>Av</th>
<th>Zona de Amenaza Sísmica</th>
<th>Ae</th>
<th>Ad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tunja</td>
<td>15001</td>
<td>0.20</td>
<td>0.20</td>
<td>Intermedia</td>
<td>0.15</td>
<td>0.07</td>
</tr>
<tr>
<td>2</td>
<td>Almeida</td>
<td>15022</td>
<td>0.25</td>
<td>0.25</td>
<td>Alta</td>
<td>0.16</td>
<td>0.08</td>
</tr>
<tr>
<td>51</td>
<td>Macanal</td>
<td>15425</td>
<td>0.25</td>
<td>0.25</td>
<td>Alta</td>
<td>0.16</td>
<td>0.08</td>
</tr>
<tr>
<td>122</td>
<td>Viracachá</td>
<td>15879</td>
<td>0.20</td>
<td>0.25</td>
<td>Alta</td>
<td>0.16</td>
<td>0.08</td>
</tr>
<tr>
<td>123</td>
<td>Zetaquirá</td>
<td>15897</td>
<td>0.20</td>
<td>0.25</td>
<td>Alta</td>
<td>0.16</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Fuente: Título A NSR – 10

Tabla 22. Coeficientes de reducción de coeficientes de aceleración sísmica

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Kst/amax</th>
<th>Análisis de Amplificación mínimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suelos enrocados y macizos rocosos muy fracturados (RQD<50%)</td>
<td>0.8</td>
<td>Ninguno</td>
</tr>
<tr>
<td>Macizos rocosos (RQD>50%)</td>
<td>1</td>
<td>Ninguno</td>
</tr>
<tr>
<td>Todos los materiales terrosan</td>
<td>0.67</td>
<td>Amplificación de onda unidimensional en dos columnas</td>
</tr>
<tr>
<td>Todos los materiales terrosos</td>
<td>0.5</td>
<td>Amplificación de onda bidimensional</td>
</tr>
</tbody>
</table>

Por tanto el coeficiente de aceleración para análisis pseudoestático resulta:

\[k = k_{ST} \times A_a = 0.8 \times 0.20 = 0.16 \]

El método de cálculo utilizado para el caso fue el de equilibrio límite que define el factor de seguridad (F.S.) como:

\[F.S. = \frac{\text{Fuerzas resistentes}}{\text{Fuerzas actuatoras}} \]

Con estos elementos se procedió a evaluar las condiciones de estabilidad de la zona.

7.5.1 Análisis estructuralmente no controlado

Este análisis se consideró para el sitio donde ya se evidenció el movimiento en la parte de los depósitos, aunque no obstante también se consideran las rocas que intervienen. En este análisis se observan el siguiente A–A’.

Las propiedades Físico-mecánicas utilizadas son resultado de los diferentes ensayos realizados donde se utilizaron los datos más bajos obtenidos ya que estos reflejan las condiciones críticas del movimiento y en algunos casos se aplicó factores de reducción a los resultados ya algunas pruebas de resistencia se realizaron sobre muestras re moldeadas, esto con el fin de poder llegar a contempla un modelo que se acerque a la verdad y no diciendo que este sea igual.
La parte superior del deslizamiento se observa en la Fotografía 17

Fotografía 17. Parte superior del movimiento

Fuente: Registro fotográfico.

El modelo gráfico el modelo analizado relaciona los datos obtenidos de la campaña de exploración geológica y geotécnica. La parte de geología aporta el perfil geológico y los parámetros mecánicos se obtienen en de los resultados de los diferentes ensayos anteriormente relacionados en el trabajo de laboratorio. Para este caso se analizado el perfil AA' ya que este refleja el comportamiento del deslizamiento como tal.
Los resultados de este análisis se relacionan en las siguientes tablas.
Tabla 24. Factores de seguridad para el modelo perfil B-B’

<table>
<thead>
<tr>
<th>Condición del modelo</th>
<th>Factor de Seguridad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Met. Fellenious</td>
</tr>
<tr>
<td>Condición de agua subterránea normal (Ru = 0.1)</td>
<td>2.423</td>
</tr>
<tr>
<td>Condición de agua subterránea crítica (Ru = 0.3)</td>
<td>2.333</td>
</tr>
<tr>
<td>Condición de agua subterránea media (Ru = 0.5) y sismo (análisis pseudoestático)</td>
<td>1.009</td>
</tr>
</tbody>
</table>

Fuente: Resultados del estudio.

Como resultado de este capítulo se realiza el mapa Geomecánico que representa las zonas con condiciones homogéneas de resistencia de suelos, clasificación de las rocas, además de involucrar los factores de seguridad de los perfiles analizados y las zonas donde se observa los potenciales mecanismos de falla. Debido a la complejidad del movimiento es complicado establecer un modelo en dos dimensiones que refleje la realidad de mismo por tal motivo los modelos geotécnicos aquí presentados no representan la realidad del movimiento.
8 ZONIFICACIÓN DE AMENAZAS POR FENÓMENOS DE REMOCIÓN EN MASA

8.1 Diagnóstico preliminar de amenazas

Se entiende como amenaza por fenómenos de remoción en masa, la probabilidad de ocurrencia de movimientos del terreno potencialmente perjudiciales en un área dada en un periodo específico. Usualmente una zonificación de amenazas es el resultado de la evaluación de parámetros topográficos, geológicos, geomorfológicos, climáticos, hídricos, agrologicos y geotécnicos, de donde se obtiene la susceptibilidad; luego, si a ello se agrega el potencial efecto de factores detonantes tales como el agua en sus diversas formas (precipitaciones, infiltraciones, fugas, escorrentía), las sobrecargas de origen antrópico o natural y los sismos, entonces se llega a establecer la amenaza.

- **Amenaza**: es la probabilidad de ocurrencia de un evento potencialmente dañino, caracterizado por una cierta intensidad, dentro de un periodo dado y en un área determinada.

- **Vulnerabilidad**: es el sistema de condiciones y procesos resultado de los factores físicos, sociales, económicos, culturales y ambientales, que aumentan o disminuyen la susceptibilidad de una comunidad o infraestructura al impacto de las amenazas.
Riesgo: es la probabilidad de que se produzcan pérdidas socio-económicas en un determinado momento y en un área del territorio determinada, a causa de una amenaza.

Existen amenazas por inundación, erosión hídrica y fenómenos de remoción en masa, las cuales es importante identificar y caracterizar, para tomar medidas de mitigación que permitan la disminución de la vulnerabilidad y la complementación de los planes de emergencia para cada sector.

<table>
<thead>
<tr>
<th>TIPOLOGÍA DE INDICADORES POR SU NATURALEZA</th>
<th>INDICADORES (ANTECEDENTES)</th>
<th>INDICADORES POTENCIALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geológicos</td>
<td>Afloramiento de rocas alteradas (diaclasadas), estructuras de formas irregulares.</td>
<td>Planos de fracturamiento a favor de la pendiente, estructuras rocosas de formas irregulares, material poco consolidado o deleznable.</td>
</tr>
<tr>
<td>Geomorfológicos</td>
<td>Terreno con pequeñas depresiones, relieve ondulado, existencia de escarpes y/o contrapendientes.</td>
<td>Pequeñas depresiones, relieve ondulado, apertura de grietas en el terreno</td>
</tr>
<tr>
<td>Hidrogeológicos</td>
<td>Abundancia relativa de agua (zonas de mayor vertimiento hídrico), suelos saturados, régimen cambiante de corrientes hídricas, acumulación o estancamiento de agua en proximidades a zonas inestables,</td>
<td>Abundancia relativa de agua y zonas de surgencia hídrica. Suelos con alto porcentaje de humedad o mojados en tiempo continuo.</td>
</tr>
<tr>
<td></td>
<td>desviación de ríos.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Vegetales</td>
<td>Existencia de plantas típicas de zonas húmedas, troncos torcidos y/o inclinados, rotura de raíces y raíces tensas, discontinuidades repentinhas en la cobertura vegetal.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Existencia de plantas típicas de zonas húmedas, raíces tensas.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Árboles tumbados en la parte baja del tronco.</td>
<td></td>
</tr>
<tr>
<td>Estructurales</td>
<td>Postes inclinados, cables tensos o flojos, casas o construcciones agrietadas o inclinadas, grietas u ondulaciones en los pavimentos o capas de rodadura, cercos desplazados.</td>
<td></td>
</tr>
<tr>
<td>Toponimia</td>
<td>Nombres de lugares que pueden sugerir inestabilidad del terreno como Cerro Agua Blanca, Vereda Volcaneras.</td>
<td></td>
</tr>
<tr>
<td>Históricos</td>
<td>Testimonios o documentos de eventos pasados.</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 25. Tabla Parámetros físicos y naturales estimados para la Identificación de Zonas Inestables (Deslizamientos)\(^1\)

La metodología empleada está enmarcada dentro del tipo de información disponible, así como la escala y finalidad de trabajo, en tal sentido el presente estudio se basa en:

- Revisión de la cartografía básica existente (topográfica, geológica, geomorfológica, geotécnica, usos del suelo, cobertura vegetal).
- Selección de la base topográfica para la elaboración y presentación de los planos solicitados.

\(^1\) (Adaptación Grupo de investigaciones UPTC, Metodología para el análisis de los riesgos naturales, (MET-ALARN) Agencia Suiza para el Desarrollo y la Cooperación).
• Identificación de unidades geológicas superficiales, geomorfología y procesos morfodinámicos activos o potenciales a través de visitas a campo.
• Elaboración de información temática complementaria como cobertura y usos del suelo, precipitaciones, sismicidad, factor antrópico (cortes, rellenos, manejo de aguas de escorrentía y superficiales).
• Elaboración del modelo geológico-geotécnico (determinación de los aspectos intrínsecos, factores contribuyentes y detonantes).
• Determinación de las posibles zonas homogéneas, mecanismos de falla, caracterización del drenaje y su relación con los fenómenos de inestabilidad potenciales y activos.

8.2 Resultado de análisis

Para la clasificación de la amenaza de la zona se utilizaron como criterios de categorización los presentados en la Tabla 26, teniendo en cuenta los parámetros de la Metodología de Leone.

<table>
<thead>
<tr>
<th>CATEGORÍA DE AMENAZA</th>
<th>F.S. CONDICIONES NORMALES</th>
<th>F.S. CONDICIONES EXTREMAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAJA</td>
<td>> 1.9</td>
<td>> 1.3</td>
</tr>
<tr>
<td>MEDIA</td>
<td>1.2 – 1.9</td>
<td>1.0 – 1.3</td>
</tr>
<tr>
<td>ALTA</td>
<td>< 1.2</td>
<td>< 1.0</td>
</tr>
</tbody>
</table>

Tabla 26. Categorización de amenazas por FRM
Se realiza una evaluación de la amenaza a partir de la norma NSR-10, donde se establecen los factores de seguridad para taludes los cuales se presentan en la Tabla 27.

<table>
<thead>
<tr>
<th>CONDICION</th>
<th>F.S. BASICOS MINIMOS DIRECTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TALUDES - CONDICION ESTATICA Y AGUA SUBTERRANEA NORMAL</td>
<td>1.5</td>
</tr>
<tr>
<td>TALUDES – CONDICION SEUDO – ESTATICA CON AGUA SUBTERRANEA NORMAL Y COEFICIENTE SISMICO DE DISEÑO</td>
<td>1.02</td>
</tr>
</tbody>
</table>

Tabla 27. Categorización de amenaza por (FRM) según nsr-10

8.3 ANALISIS DE AMENAZA

Para la zona estudiada se establecieron las unidades indicadas en el anexo 1, mapas temáticos, Plano 7. La imagen de este mapa temático se encuentra a continuación.
ELABORACIÓN DE ESTUDIO DE RIESGO (AMENAZA Y VULNERABILIDAD) Y DISEÑO DE OBRAS DE ESTABILIZACIÓN EN LA VEREDA SERRANIAS, MUNICIPIO DE MACANAL JURISDICCIÓN DE LA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR (CORPOCHIVOR).
8.4 Evaluación de Vulnerabilidad

Para determinar la vulnerabilidad de las edificaciones ante deslizamientos, se empleó el cálculo del denominado Índice de Vulnerabilidad Física (IVF), utilizando para tal efecto la metodología propuesta por Leone y modificada por Soler. En resumen, el trabajo consiste en calcular los índices de vulnerabilidad física (IVF), dependiendo del tipo de movimiento, la intensidad de las solicitaciones y las características del elemento expuesto (edificaciones y demás construcciones existentes).

En forma general, la vulnerabilidad es una función tanto de la intensidad y magnitud del fenómeno como de la resistencia del elemento expuesto. La primera variable ya se tuvo en cuenta en la evaluación de la amenaza; para la segunda variable (resistencia del elemento expuesto), se obtendrá una tipificación de las edificaciones teniendo en cuenta criterios de resistencia de la estructura.

La clasificación de la tipología de la estructura, los rangos de velocidad utilizados y la matriz de daños empleada en el estudio se presentan en el Anexo 10, Diseño de Obras, en el documento síntesis correspondiente. Así mismo las unidades definidas se presentan en el mapa temático 8, que corresponde al Anexo 1 (Mapas Temáticos).

A continuación se presenta la imagen del mapa correspondiente a la vulnerabilidad Física y Social resultado de este estudio.
LEYENDA

- VULNERABILIDAD ALTA ANTE DESLIZAMIENTOS: Presentan construcciones de mala calidad, la oración de las viviendas y vías no cumplen con las condiciones para el área, no presentan servicios públicos, la pérdida de materiales es alta en caso de deslizamiento.

- ZONA NO VULNERABLE: Área que no presenta infraestructuras susceptibles de ser afectadas por fenómenos de remoción en masa.

Figura 38. Imagen Mapa de Vulnerabilidad Física y Social
9 EVALUACIÓN Y ANALISIS DE VULNERABILIDAD SOCIAL

Se define vulnerabilidad con relación a los siguientes aspectos:

La **vulnerabilidad estructural** 2 o física describe el grado hasta el cual una estructura es susceptible de ser dañada o alterada en una situación de peligro.

La **vulnerabilidad humana** es la falta relativa de capacidad de una persona o comunidad para prever un peligro, hacerle frente, resistirlo y recuperarse de su impacto. Entre los factores que incrementan la vulnerabilidad humana a los desastres se encuentra la falta de planificación en el desarrollo o crecimiento de la infraestructura, el crecimiento demográfico, la falta de conocimientos acerca de cómo actuar frente a los efectos de los desastres y la pobreza.

De todos los factores, es probable que la pobreza constituya el origen de la vulnerabilidad de la mayoría de la gente, al impacto de la mayoría de las amenazas o peligros.

La vulnerabilidad es el nivel de pérdida de un conjunto dado de elementos, como resultado de la ocurrencia de un fenómeno. Los elementos que pueden ser

2 Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (UNESCO). Comité Coordinador para la Prevención de los Desastres Naturales en América Central (CEPREDENAC). **ANÁLISIS DE RIESGO POR INUNDACIONES Y DESLIZAMIENTOS DE TIERRA EN LA MICROCUENCA DEL ARENAL DE MONTSERRAT.**

ELABORACIÓN DE ESTUDIO DE RIESGO (AMENAZA Y VULNERABILIDAD) Y DISEÑO DE OBRAS DE ESTABILIZACIÓN EN LA VEREDA SERRANIAS, MUNICIPIO DE MACANAL JURISDICCIÓN DE LA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR (CORPOCHIVOR).
afectados dentro de las áreas de ocurrencia de la amenaza; se tienen calles, edificaciones, población, cultivos entre otros.

9.1 Evaluación componente social, municipio de macanal, vereda serranías.

La caracterización de la población se realizó mediante una vista de campo al lugar afectado por el movimiento en masa presentado y priorizado previamente por los entes administrativos del municipio de Macanal. El cual presenta una vía de acceso en regular estado, ya que no presenta un manejo adecuado del agua de escorrentía como aguas lluvias, lo que afecta la dureza y estabilidad del terreno.

Fotografía 18. Vía a la vereda serranías.

Fuente: Registro Fotográfico

El área evaluada se encuentra ubicada en la vereda serranías, por la vía que conduce a la escuela de muselito, en el sector del cruce de la quebrada el ramal. Al realizar una caminata observado el lugar, no se evidencio la presencia de casas de habitación de familias, lo cual se corroboró con una pequeña entrevista realizada a una persona que cuida semovientes en la zona (Sr. Héctor Alfonso Lemus bermejo), la cual manifestó que la zona es despoblada, por el tipo de clima
de paramo que caracteriza al sector. Razón por la cual los terrenos allí ubicados se utilizan por lo general para el cuidado de animales, ya que la vegetación y el agua son abundantes en esta zona, prestándose para el desarrollo de estas actividades agrícolas.

Fotografía 19. Vista del movimiento del terreno sobre la vía.

Fuente: Registro Fotográfico

La vía veredal es la que presenta mayores afectaciones por el movimiento del terreno, al punto que en varias ocasiones la vereda serranías a quedado incomunicada del casco urbano del municipio de Macanal, de igual manera esta vía sirve como ruta alterna hacia el municipio de campo hermoso, por lo que es importante su habilitación no solo para la comunidad de la vereda serranías, sino también de las veredas circunvecinas, especialmente para la comercialización de productos agrícolas ganaderos que se producen en esta zona.
Fotografía 20. Afectación de la vía.

Fuente: Registro Fotográfico

El tiempo de afectación en la vía de la vereda serranías al parecer según lo manifestó la persona que se entrevistó, inicio hace aproximadamente un año, afectando a las comunidades que se sirven de esta vía, por lo que se es importante realizar acciones de contención del terreno y adecuación de la misma.

Fuente: Registro Fotográfico
10 OBRAS RECOMENDADAS

Los planes de prevención, mitigación, monitoreo y mantenimiento son presentados en detalle en el Anexo 10 (Diseño de Obras), que forma parte de este documento.

El presupuesto general se encuentra adjunto en el anexo 11 (Presupuesto y especificaciones técnicas de obras) y los planos de ubicación y detalle de las obras propuestas para control y mitigación de los FRM se presentan en el anexo 12 de este documento (Planos Obras Recomendadas).

En la memoria digital del presente estudio se presenta una hoja de cálculo correspondiente al presupuesto de las obras propuestas y el análisis detallado APU. Dicha hoja puede ser modificada por la entidad contratante correspondiente para modificación de AIU, precios unitarios, costos de transporte a los sitios de obra y demás ajustes que sean considerados por dicha entidad.
11 CONCLUSIONES.

- La vía veredal es la que presenta mayores afectaciones por el movimiento del terreno, al punto que en varias ocasiones la vereda serranías ha quedado incomunicada del casco urbano del municipio de Macanal, de igual manera esta vía sirve como ruta alterna hacia el municipio de campo hermoso, por lo que es importante su habilitación no solo para la comunidad de la vereda serranías, sino también de las veredas circunvecinas, especialmente para la comercialización de productos agrícolas ganaderos que se producen en esta zona.

- El FRM analizado es un movimiento en masa en el cual se identifica roca y suelo desprendido de ladera con cierto grado de inclinación de la pendiente, tiene comportamiento remontante, causados por socavación de taludes debido a la acción del rio, dicha socavación provoca el retroceso del material del talud perdiendo apoyo en su base, se van desplomando progresivamente. Por ello representa un papel esencial en la formación y migración del meandro. En el área predomina una vegetación rala y pequeña, incapaz de retener el suelo, donde facilita la inestabilidad de proceso.
12 RECOMENDACIONES.

- Se deberá realizar inspección de la recolección de aguas y su disposición final en el corredor de la vía. Mantenimiento al sistema de alcantarillado y obras de drenaje existente.
- Se recomienda la construcción de una estructura de contención en gaviones de H=2.0m.
- Se recomienda la construcción de una serie de cunetas para la captación de agua de escorrentía. (ver ubicación en Anexo 12).
- Se recomienda realizar visitas periódicas, no mayores a dos meses al sitio para hacer inspección de grietas, fisuras o movimientos de la banca de la vía.
- Se deberán amojonar puntos de la zona del deslizamiento para realizar control semestral de los desplazamientos del mismo.
13 BIBLIOGRAFÍA

Adaptado de Leone (1996)

