dc.creator | A. De Bono | |
dc.creator | M. G. Mora | |
dc.date.accessioned | 2016-07-28T13:28:58Z | |
dc.date.available | 2016-07-28T13:28:58Z | |
dc.date.issued | 2014 | |
dc.identifier.citation | A. De Bono, M. G. Mora. (2014). A global exposure model for disaster risk assessment . Ginebra. International Journal of Disaster Risk Reduction | |
dc.identifier.uri | http://hdl.handle.net/20.500.11762/19781 | |
dc.identifier.uri | https://doi.org/10.1016/j.ijdrr.2014.05.008 | |
dc.description.sponsorship | Centro Internacional de Métodos Numéricos e Ingeniería - CIMNE, Universidad de Ginebra, United Nations Environment Programme - UNEP | |
dc.format | Digital (.pdf) | |
dc.language.iso | en | |
dc.publisher | International Journal of Disaster Risk Reduction | |
dc.source | © Elsevier | |
dc.source | instname:Unidad Nacional para la Gestión del Riesgo de Desastres | spa |
dc.source | reponame:Repositorio Institucional Unidad Nacional para la Gestión del Riesgo de Desastres | spa |
dc.subject | Urbano | |
dc.subject | elementos expuestos | |
dc.subject | población | |
dc.subject | GAR | |
dc.subject | Downscale | |
dc.subject | Capital urbano | |
dc.title | A global exposure model for disaster risk assessment | |
dc.type | info:eu-repo/semantics/article | spa |
dc.description.departamento | GINEBRA | |
dc.type.spa | Articulo de investigación | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.description.abstractenglish | "The global exposure database is being produced for the global risk assessment 2013, part of the Global Assessment Report (GAR 2013). It aims to map at a granular geographical level the world`s capital stock in urban areas. It is designed primarily to assess the risk of economic losses as consequence of natural hazards at a global scale. The Global Exposure database for GAR 2013 is an open exposure global dataset at 5 km spatial resolution which integrates population and country-specific building typology, use and value. It is currently suitable mainly for earthquakes and cyclones probabilistic risk modeling using CAPRA platform. This paper describes the development of the GAR 2013. The database is based on a top-down or ""downscaling"" approach of national/regional socio-economic and building type information. These information are transposed onto a regular raster dataset (grid format) using a geographic population distribution model as a proxy. " | |
dc.identifier.doi | International Journal of Disaster Risk Reduction 10(2014)442-451 | |
dc.identifier.doi | https://doi.org/10.1016/j.ijdrr.2014.05.008 | |
dc.relation.publisherversion | http://www.sciencedirect.com/science/article/pii/S2212420914000478 | |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | spa |